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Abstract

We study the dynamics of gradient flow with small weight decay on general
training losses F : Rd → R. Under mild regularity assumptions and assuming
convergence of the unregularised gradient flow, we show that the trajectory with
weight decay λ exhibits a two-phase behaviour as λ → 0. During the initial fast
phase, the trajectory follows the unregularised gradient flow and converges to a
manifold of critical points of F . Then, at time of order 1/λ, the trajectory enters a
slow drift phase and follows a Riemannian gradient flow minimising the ℓ2-norm
of the parameters. This purely optimisation-based phenomenon offers a natural
explanation for the grokking effect observed in deep learning, where the training
loss rapidly reaches zero while the test loss plateaus for an extended period before
suddenly improving. We argue that this generalisation jump can be attributed to
the slow norm reduction induced by weight decay, as explained by our analysis.
We validate this mechanism empirically on several synthetic regression tasks.

1 Introduction

Strikingly simple algorithms such as gradient methods are a driving force behind the success of
deep learning. Nonetheless, their remarkable performance remains mysterious, and a full theoretical
understanding is lacking. In particular: (i) convergence to low training loss solutions on non-convex
objectives is far from trivial, and (ii) it is unclear why the resulting solutions generalise well [Zhang
et al., 2017]. These questions are accompanied by a range of surprising phenomena that arise during
training. One such intriguing behaviour is known as the grokking phenomenon, which we explore
in this work. Coined by Power et al. [2022], this term describes a two-phase pattern in the learning
curves: first, the training loss rapidly decreases to zero, while the test loss plateaus at a certain value.
This is followed by a second phase, where the training loss remains zero, but the test loss steadily
decreases, leading to a final improved generalisation performance, as depicted in Figure 1 (left).

In this paper, we propose a novel theoretical perspective to explain this phenomenon. By examining
the gradient flow dynamics with weight decay, we show that, in the limit of vanishing weight decay,
we can fully describe the trajectory of the model parameters. Specifically, we prove that the training
process can be decomposed into two distinct phases. In the first phase, the gradient flow follows the
unregularised path, converging to a manifold of critical points of the training loss. In the second, the
trajectory enters a slow drift phase, where the weights move along this manifold, driven by weight
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Training time t

Figure 1: Gradient flow with small weight decay λ. (Left) A typical example of grokking: the training
loss rapidly drops to zero, while the test loss plateaus for a long period before eventually decreas-
ing—coinciding with a steady drop in the ℓ2-norm of the weights. (Right) Schematic illustration
in parameter space Rd of the optimisation behaviour described in Theorem 1. The trajectory wλ(t)
initially follows the unregularised gradient flow and converges to a manifold of critical points of F
(fast dynamics). At time t ≈ 1/λ, the regularisation term becomes dominant and induces a slow drift
along this manifold toward a lower ℓ2-norm solution (slow dynamics).

decay, gradually reducing their ℓ2 norm, as illustrated in Figure 1 (right). We argue that this slow
decrease in the weight norms explains the grokking phenomenon, as smaller weight norms are often
correlated with better generalisation. To convey the main intuition, we state below an informal version
of our result, describing the full trajectory of the gradient flow with small weight decay.

Informal statement of the result. For a generic training loss F : Rd → R satisfying some
regularity assumptions, we consider the gradient flow wλ regularised with weight decay: ẇλ(t) =
−∇F (wλ(t)) − λwλ(t). Under the assumption that the unregularised gradient flow trajectory is
bounded, we prove the following.
Theorem 1 (Main result, informal). As the weight decay parameter λ is taken to 0, the trajectory
wλ(t) can be seen as a composition of two coupled dynamics:

1. (Fast dynamics driven by F given by Proposition 1) In a first phase, the weights follow the
unregularised gradient flow and converge to a manifold of critical points of F .

2. (Slow dynamics driven by the weight decay given by Proposition 2) At time t ≈ 1/λ, the
iterates start slowly drifting along this manifold, following a Riemannian gradient flow that
decreases the ℓ2-norm of the weights.

Link with the grokking phenomenon. Note this is a purely optimisation result: no statistical
assumptions are made, and it a priori does not imply any improvement in test loss during the slow
phase. However, it provides a natural explanation for the grokking phenomenon. Indeed, in practice,
for many deep learning models with random initialisation, gradient flow converges to a global
minimiser of the training loss. When this solution generalises poorly—as is often the case with large
initial weights, in the so-called lazy regime [Chizat et al., 2019]—the subsequent slow drift along the
critical manifold, driven by weight decay, decreases the ℓ2-norm of the solution and simplifies it in the
second phase. Since lower weight norms often correlate with better generalisation [Bach, 2017, Liu
et al., 2022c, D’Angelo et al., 2024], this offers a convincing explanation for the delayed improvement
in test performance. We discuss various settings where this behaviour is observed in Section 5.

2 Related work

Grokking in experimental works. The term grokking was originally coined by Power et al.
[2022], which studied a two-layer transformer trained with weight decay on a modular addition task.
They observed that the network quickly fits the training data while generalising poorly, followed
much later by a sudden transition to near-perfect generalisation. Following this work, many stud-
ies have investigated modular addition tasks to better understand the mechanisms underlying this
phenomenon [Nanda et al., 2023, Gromov, 2023]. However, grokking has been observed far beyond
this setting. For instance, Barak et al. [2022] showed that training a neural network to learn parities
exhibits a similar delayed generalisation pattern. In Liu et al. [2022c], grokking was induced across a
broad range of tasks, including image classification and sentiment analysis, by using small datasets,
large initialisations, and weight decay. Other settings and architectures where grokking-like behaviour
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appears include matrix factorisation [Lyu et al., 2023] and learning XOR-clustered data with a ReLU
network [Xu et al., 2023]. Finally, it is worth noting that this delayed transition in generalisation was
already observed in earlier works, as clearly illustrated in Figure 3 of Chizat and Bach [2020].

Grokking as the transition between lazy and rich regimes. Several works have framed grokking
as the transition between the lazy and rich regimes. The lazy regime, also called the NTK regime,
was introduced by Jacot et al. [2018]. It typically arises when the network is trained from large
initialisations [Chizat et al., 2019], and corresponds to a setting where zero training loss can be
quickly achieved, but often with poor generalisation performance. In contrast, the rich regime (also
called the feature learning regime) corresponds to a setting where the network actively learns new
internal features during training. In the classification setting, Lyu and Li [2019] show that the rich
regime is always attained for homogeneous parameterisations, and similarly, Chizat and Bach [2020]
provide an analogous result for infinitely wide two-layer networks. In this context, Lyu et al. [2023]
and Kumar et al. [2024], followed by Mohamadi et al. [2024], offer a theoretical perspective on
grokking as the transition from the lazy regime to the rich regime during training: initially, the
predictor quickly converges towards the NTK solution, and later escapes this regime to reach a better
generalising solution, driven by the effects of implicit regularisation and/or weight decay.

The role of weight decay. The role of weight decay in grokking remains somewhat debated. While
many of the original works exhibiting the phenomenon include weight decay [Power et al., 2022, Liu
et al., 2022b], grokking has also been observed without [Chizat and Bach, 2020, Xu et al., 2023], as
strongly emphasised by Kumar et al. [2024]. However, as shown in Lyu et al. [2023], the transition
tends to occur much later and to be less sharp without weight decay. In this context, weight decay can
be interpreted as a factor that triggers or accelerates the transition from the lazy to the rich regime.
While grokking can be observed in classification tasks even without weight decay—thanks to the
algorithm’s implicit bias—to the best of our knowledge, it cannot occur in regression tasks unless
weight decay is used. Of particular relevance to our work, Liu et al. [2022c] propose an intuitive
explanation of grokking that is based on weight decay: during the first phase, the model rapidly
converges to a poor global minimum; during the second, slower phase, weight decay gradually steers
the iterates toward a lower-norm solution with better generalisation properties. While appealing,
this explanation remains informal and lacks rigorous theoretical support. In this work, we provide a
formal analysis of the optimisation dynamics underlying the grokking phenomenon: an initial fast
phase leads to convergence toward the solution associated with the lazy regime, followed by a slower
second phase that drives convergence toward the solution characteristic of the rich regime.

Drift on the interpolation manifold. Many theoretical works in the machine learning community
have studied the training dynamics of gradient methods in overparameterised neural networks, where
the set of zero training loss solutions forms a high-dimensional manifold. In this context, leveraging
results from dynamical systems theory [Katzenberger, 1990], the work of Li et al. [2021] describes
the drift dynamics induced by stochastic noise after stochastic gradient descent (SGD) reaches the
manifold. This analysis was further extended by Shalova et al. [2024]. Leveraging a similar stochastic
differential framework, Vivien et al. [2022] precisely characterises this drift in the setting of diagonal
linear networks, and proves that it leads to desirable sparsity guarantees. Much in the spirit of our
work, although outside the deep learning context, Fatkullin et al. [2010] derive stochastic differential
equations that describe the dynamics of systems with small random perturbations on energy landscapes
with manifolds of minima, illustrating how the system first converges to the manifold and then drifts
along it. Whereas these works emphasise drift induced by the stochasticity of gradient updates, our
analysis focuses on a deterministic drift arising from the regularisation of the training objective.

3 Setting and preliminaries

We consider a loss function F : Rd → R+ which is sufficiently smooth, as stated in Assumption 1
below. Typical examples include the least square loss over some training dataset, where the parameters
to optimise represent the weights of some neural network architecture. For a given λ > 0, we define
the regularised loss Fλ as:

Fλ(w) := F (w) +
λ

2
∥w∥22, ∀w ∈ Rd.

Initialising the parameters from w0 ∈ Rd (independently of λ), we then consider the gradient flow
wλ over the regularised loss for any λ > 0, as the solution of the differential equation

ẇλ(t) = −∇Fλ(w
λ(t)) and wλ(0) = w0. (1)
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Gradient flow is the limit dynamics of (stochastic) gradient descent as the learning rate goes to 0. For
λ = 0, we denote wGF the gradient flow on the unregularised loss:

ẇGF(t) = −∇F (wGF(t)) and wGF(0) = w0. (2)

In the remaining of the paper, we consider the following assumption on the objective function.
Assumption 1. The function F is C3 on Rd, its third derivative is locally Lipschitz and F is definable
in an o-minimal structure. Moreover, the solution wGF to the gradient flow ODE (2) is bounded.

The regularity conditions on F ensure that, for any λ ≥ 0, the gradient flow ODE has a unique solution,
which is defined for all t ≥ 0. This is a consequence of the Picard–Lindelöf theorem and boundedness
of the trajectories. Definability in the o-minimal sense guarantees that bounded gradient flow trajec-
tories converge to a limit point [Kurdyka, 1998, Thm. 2]. This is a mild assumption satisfied by most
functions arising in applications, such as polynomials, logarithms, exponentials, subanalytic functions,
and finite combinations of those; see Coste [1999], Bolte et al. [2007] for more details. Finally, note
that the boundedness assumption on the unregularised flow excludes classification settings where
the network can perfectly separate the data, since in such cases the unregularised iterates diverge.

3.1 Stationary manifold and Riemannian flow

Assumption 1 guarantees that the gradient flow converges to a limit point wGF
∞ := limt→∞ wGF(t),

which is a stationary point of F . In typical scenarios of training overparameterised models, stationary
points are not isolated, but form continuous sets [Cooper, 2021].
Definition (Definition of the manifold M). We define M to be the largest connected component of
∇F−1(0) containing wGF

∞ , where ∇F−1(0) corresponds to the set of stationary points of F .

Our key assumption is that M forms a smooth manifold, and that it contains only local minimizers
(and not saddle points). Additionnally, we impose that the non-zero eigenvalues of the Hessian on
M are lower bounded by some constant η > 0. Following the terminology of Rebjock and Boumal
[2024], this is known as the Morse-Bott property.
Assumption 2. M is a smooth submanifold of Rd of dimension k ∈ [d], i.e. for any w ∈ M,
rank(∇2F (w)) = d−k. Also, there exists η > 0 such that for any w ∈ M, all non-zero eigenvalues
of ∇2F (w) are lower bounded by η.

As stated in Rebjock and Boumal [2024], for C2 functions this property is equivalent to the Kur-
dyka–Łojasiewicz, also known as Polyak–Łojasiewicz (PL) condition locally around M [Kurdyka,
1998, Bolte et al., 2009]. It implies that (i) every point in M is a local minimiser, and (ii) all gradient
flow trajectories are locally attracted towards M. This stability property is essential for proving
regularity of the flow map Φ in Section 4. Let us discuss the relevance of Assumption 2 in the context
of overparameterised machine learning.

• Convergence to a local minimiser: our assumption rules out the possibility that wGF converges
to a saddle point of F . This is justified by a large number of works showing that gradient
methods avoid saddle points for almost all initialisations. In particular, Lee et al. [2016, 2019]
prove it under the assumption that all saddle points of F are strict. Although their result only
holds for discrete-time gradient descent, the underlying argument can be extended to gradient
flow (the proof relies on the Stable Manifold Theorem for dynamical systems, which also holds
in continuous time [Teschl, 2012, §7]).

• Morse-Bott/Łojasiewicz property: this is a common assumption in the analysis of gradient
flow dynamics for overparameterised networks [Li et al., 2021, Fatkullin et al., 2010, Shalova
et al., 2024]. Note that for general models, the critical set may not form a manifold everywhere.
However, it is often possible to show that the manifold structure holds on most of the space,
excluding some degenerate points; see Section 5 for examples and Liu et al. [2022a] for a generic
result. Moreover, the results derived from such an assumption are generally very representative
of empirical observations, as can be seen in Section 5.

Riemannian gradient flow on M. We endow M with the standard Euclidean metric. For any
differentiable function h : Rd → R, we denote by gradMh the Riemannian gradient on M of the
function h defined as follows:

gradMh :
M → Rd

w 7→ PTM(w)(∇h(w)),
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where PTM(w) is the orthogonal projection on the tangent space to M at w. Under Assumption 2,
typical properties of smooth manifolds imply that TM(w) = Ker(∇2F (w)) [see e.g., Boumal, 2023,
for a detailed introduction to optimisation on manifolds]. Using this notion of Riemannian gradient,
we study the Riemannian gradient flow for some objective function h and initialization wM ∈ M,
defined as the curve w satisfying,

ẇ(t) = −gradMh(w(t)) and w(0) = wM. (3)

By construction of the Riemannian gradient, the trajectory of any solution of this ODE necessarily
belongs to ∇F−1(0), and therefore to M, since M is a maximal connected component. If h is C2

and has compact sublevel sets, Assumptions 1 and 2 guarantee that there exists a unique solution to
Equation (3) and that it is defined on R+.

4 Grokking as two-timescale dynamics

This section states our main results, where we characterise the two-timescale dynamics of the
regularised gradient flow (1) in the limit λ → 0. In Section 4.1 we describe the first phase, the fast
dynamics, where wλ approximates the unregularised gradient flow solution on finite time horizons.
Section 4.2 then identifies the second, slow dynamics happening at arbitrarily large time horizons,
where wλ follows the Riemannian flow of the ℓ2 norm on the manifold M of stationary points.

4.1 Fast dynamics

A first simple observation is that as λ → 0, Fλ → F uniformly on any compact of Rd. From there, it
seems natural that wλ should converge, at least pointwise, to wGF as λ → 0. A Grönwall argument
indeed allows to characterise the first, fast timescale dynamics given by Proposition 1 below.
Proposition 1. If Assumption 1 holds, then for all T ≥ 0, wλ −→

λ→0
wGF in (C0([0, T ],Rd), ∥ · ∥∞)

Importantly, uniform convergence only holds on finite time intervals of the form [0, T ], but is
not true on R+. More precisely, grokking is observed when the two limits cannot be exchanged:
limλ→0+ limt→∞ wλ(t) ̸= limt→∞ limλ→0+ wλ(t) = limt→∞ wGF(t). In Figure 1, the endpoint
of the red arrow corresponds to this first limit, while the endpoint of the blue arrow corresponds to the
second. This distinction highlights a key aspect of grokking: the dynamics evolve on two different
timescales. Initially, as described by Proposition 1, the regularised flow tracks the unregularised one.
But at much larger time horizons, the regularised dynamics begin to diverge.

4.2 Slow dynamics

The second part of the dynamics is harder to capture, since it happens at a time approaching infinity,
when λ approaches zero. It is done using theory of singularly perturbed systems. In the following,
we associate to the unregularised flow function a mapping ϕ : Rd × R+ → Rd satisfying

ϕ(w, t) = ϕ(w, 0)−
∫ t

0

∇F (ϕ(w, s)) ds, ∀(w, t) ∈ Rd × R+.

Note that ϕ(w, t) simply corresponds to the solution of the gradient flow of Equation (2) at time t
when initialised in w. When possible to define—i.e., when the gradient flow admits a limit point in
Rd—we define the mapping Φ as

Φ(w) = lim
t→∞

ϕ(w, t). (4)

Thanks to Assumption 1, the unregularised flow initialised in w0 admits the limit point Φ(w0), which
is necessarily a stationary point of the loss, i.e., ∇F (Φ(w0)) = 0. Assumption 2 then ensure that the
mapping Φ is defined and C2 on some neighbourhood of M, thanks to a result of Falconer [1983].
Lemma 1. If Assumptions 1 and 2 hold, there exists an open neighbourhood U of M such that Φ is
defined and C2 on U .

Now the mapping Φ is well defined on a neighbourhood of M, it can be used to describe the limit of
the slow dynamics. For λ > 0, we let w̃λ : t 7→ wλ(t/λ). We indeed have to adequately “speed-up”
time to capture its behaviour. Notably, w̃λ satisfies the following differential equation:
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˙̃wλ(t) = −w̃λ(t)− 1

λ
∇F (w̃λ(t)) and w̃λ(0) = w0. (5)

Our goal in this section is to study the limit function limλ→0 w̃
λ. Intuitively, the 1

λ∇F term in
Equation (5) will enforce this limit to stay on the stationary manifold M for any t > 0. The slow
dynamics will be shown to approximate the Riemannian flow of the squared Euclidean norm on
the stationary manifold M for t > 0. This limit flow is defined by w̃◦, which is the solution of the
following differential equation on R+, for the function ℓ2 : w 7→ ∥w∥22/2,

˙̃w◦(t) = −gradM ℓ2(w̃
◦(t)) and w̃◦(0) = Φ(w0). (6)

Recall that the Riemannian gradient is gradM ℓ2(w) = PKer(∇2F (w))(w) for any w ∈ M. De-
noting DΦw the differential of Φ at w, Li et al. [2021, Lemma 4.3] proved that for any w ∈ M,
PKer(∇2F (w)) = DΦw, i.e., the differential of Φ at w is given by the orthogonal projection onto the
kernel space of the Hessian of F . In consequence, w̃◦ also satisfies the following differential equation:

˙̃w◦(t) = −DΦw̃◦(t)(w̃
◦(t)) and w̃◦(0) = Φ(w0).

Using this alternative description of w̃◦, we can now prove our main result, given by Proposition 2.
Proposition 2. If Assumptions 1 and 2 hold, then for all T, ε > 0, we have w̃λ −→

λ→0
w̃◦ in

(C0([ε, T ],Rd), ∥ · ∥∞), where w̃◦ is the unique solution on R+ of the differential equation (6).

Proposition 2 states that the slow dynamics w̃λ converges uniformly to w̃◦ as λ → 0 on any compact
interval of the form [ε, T ]. Note that excluding 0 from this interval (i.e., ε > 0) is necessary. Indeed,
uniform convergence cannot happen on an interval of the form (0, T ], since w̃λ(0) = w0 for any λ > 0
and w̃◦(0) = Φ(w0). In particular, Proposition 2 leads to pointwise convergence of w̃λ: we have




lim
λ→0

w̃λ(0) = w0,

lim
λ→0

w̃λ(t) = w̃◦(t) if t > 0.

This limit function limλ→0 w̃
λ is non-continuous at 0. Indeed the whole fast dynamics, which

follows the unregularised flow, happens at that 0 point in the limit λ → 0. On the other hand,
Proposition 2 describes the second phase of the dynamics, starting from the convergence point of
the unregularized flow Φ(w0) – at the rescaled time 0+ – and following the Riemannian flow on M.

Note that, once the junction between the slow and fast dynamics is carefully handled via Lemma 2
in Appendix A.2, Proposition 2 can be derived from Fatkullin et al. [2010, Theorem 2.2], which
heavily relies on the technical result of Katzenberger [1990]. However, for the sake of completeness
and readability, we provide a concise and self-contained proof of Proposition 2, avoiding the use of
heavyweight methods from Katzenberger [1990] and relying on weaker assumptions.

Sketch of proof. We here provide a sketch of proof with the key arguments leading to Proposition 2.
Its complete and detailed proof can be found in Appendix A.3. We first define the shifted slow
dynamics ṽλ for any t ≥ 0 as ṽλ(t) = w̃λ(t + t(λ)), where t(λ) is the “junction point” between
the two dynamics given by Lemma 2 in Appendix A.2, and satisfies limλ→0 t(λ) = 0. Using
Lemma 2, ṽλ then follows the same differential equation as w̃λ, with an initial condition now
satisfying limλ→0 ṽ

λ(0) = Φ(w0) ∈ M. While the dynamics of ṽλ might be hard to control as
λ → 0, it is easier to control the one of Φ(ṽλ). Using the chain rule, we indeed have

Φ̇(ṽλ(t)) = −DΦṽλ(t) ·
(
ṽλ(t) +

1

λ
∇F (ṽλ(t))

)
.

Then using the fact that for any w in a neighbourhood of M, DΦ(w) · ∇F (w) = 0 [Li et al., 2021,
Lemma C.2], this directly rewrites as

Φ̇(ṽλ(t)) = −DΦṽλ(t) · ṽλ(t).
Now note that this resembles the differential equation satisfied by w̃◦. The two differences being
that (i) the initialisation points differ, but limλ→0 ṽ

λ(0) = w̃◦(0); (ii) the time derivative is on Φ(ṽλ)
rather than ṽλ directly. To handle the second point, ṽλ and Φ(ṽλ) obviously converge to the same
initialisation point as λ → 0. One can then use stability of the manifold M, thanks to Assumption 2, to
show that supt∈[0,T ] ∥ṽλ(t)−Φ(ṽλ(t))∥ converges to 0 as λ → 0. This then allows to conclude.
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Characterizing the limit of the Riemannian flow. By monotonicity of its norm, w̃◦ is obviously
bounded over time. Typical optimisation results then guarantee that the limit set of w̃◦(t) as t → ∞
is contained in the set of critical points of the squared Euclidean norm on the manifold M, given by
the KKT points of the following constrained problem:

min
w∈M

∥w∥22. (7)

The notion of KKT points indeed extend to smooth manifolds [Bergmann and Herzog, 2019], so that
under Assumption 2, the KKT points of Equation (7) are given by the points w⋆ ∈ M satisfying
gradMℓ2(w

⋆) = 0, where we recall gradMℓ2 is the Riemannian gradient.

We are then able to show that wλ converges towards the set of KKT points. Note that this does not
follow from Proposition 2 alone, as we also need to show that trajectory of wλ remains bounded
independently of λ: we can prove this is true in our case.
Proposition 3. If Assumptions 1 and 2 hold, then for any sequence (λk)k∈N such that λk →

k→∞
0,

the limit points of (limt→∞ wλk(t))k∈N are included in the KKT points of Equation (7).

While Proposition 3 guarantees that wλ gets arbitrarily close to KKT points of Equation (7) as λ goes
to 0, it does not imply that it has the same limit as w̃◦. It is however guaranteed with the additional
assumption that w̃◦(t) converges to a strict local minimum of the Euclidean norm on the manifold M.
Proposition 4. Let Assumptions 1 and 2 hold and, assume additionally that w◦(t) converges towards
a strict local minimum w⋆ of the constrained problem (7). Then limλ→0 limt→∞ wλ(t) = w⋆.

When the slow limit dynamics on M converges towards a strict local minimum, Proposition 4
guarantees that, for small enough λ, wλ gets trapped in the vicinity of this local minimum as t → ∞,
allowing us to get a perfect characterisation of limλ→0 limt→∞ wλ(t). In particular, this double limit
corresponds to the limit of the slow dynamics w̃◦, while the permuted limit (limt→∞ limλ→0 w

λ(t))
corresponds to the limit of the fast dynamics wGF, thanks to Proposition 1.

Comparison with Lyu et al. [2023]. The work most closely related to ours is that of Lyu et al.
[2023], which provides a theoretical characterization of the grokking phenomenon as a transition from
the NTK regime—i.e., the unregularised flow initialised at large scales—to the rich regime, which
typically converges to KKT points of Equation (7). However, their analysis does not offer a general
optimisation-based perspective on the phenomenon and, in particular, does not account for the slow
drift phase along the solution manifold, which we identify and characterise. Moreover, their setting
is more restrictive: it assumes specific network architectures with homogeneous parameterisation
and requires large initialisation scales. In contrast, our results hold outside the NTK regime and apply
across a broader class of settings. In addition, their theoretical guarantees rely on taking the initial-
isation scale to infinity while simultaneously letting the regularisation strength tend to zero, with both
rates polynomially coupled. Their analysis establishes that, for some sufficiently large time t̃(λ), the
regularised flow wλ approaches KKT points of Equation (7), but it does not provide guarantees about
the asymptotic behavior beyond this time. By contrast, Proposition 3 characterises the limit points
of the flow wλ, offering a stronger and more complete understanding of its long-term dynamics.

5 Examples and experiments

Linear regression. Let F (w) = ∥Xw − y∥22 with X ∈ Rn×d, and assume that minF = 0. The
problem is convex and the set of critical points is the affine subspace M = {w : Xw = y};
Assumption 2 is satisfied globally.

It is well known that unregularised gradient flow wGF converges to PM(w0), the projection of the
initial point on M. Then, since M is convex, the Riemannian flow on M necessarily converges to
the minimal ℓ2 norm solution w⋆ = X+y, where X+ denotes the pseudo-inverse. Those two points
are different (unless w0 = 0), which leads to grokking, as w⋆ is expected to have better generalization
properties than PM(w0) [Bartlett et al., 2020]. In this setting, the trajectories of wλ can be computed
explicitly to illustrate the two-timescale dynamics; see Appendix C.

Matrix completion. This is a prototypical non-convex problem which is amenable to theoretical
analysis. The goal is to recover a matrix M⋆ ∈ Rn×m, which is assumed to be low-rank, from a
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subset of observed entries in Ω ⊂ [n]× [m], by solving

min
U∈Rn×r,V ∈Rm×r

F (U, V ) =
∑

(i,j)∈Ω

(
(UV ⊤)ij −M⋆

ij

)2
, (8)

where r is the target rank. If the rank of the ground truth M⋆ is known, one can set r accordingly.
However, the true rank is often unknown. An alternative approach is to use overparameterisation and
choose r much higher than needed. Although in this case F has many minimizers, our results
indicate that the gradient flow trajectories (2) for small λ tend to converge towards low-rank
solutions.

More precisely, we analyse the extreme overparameterised setting when r = m+ n. In Appendix C,
we show that the set M⋆ of stationary points of F which are nonsingular matrices forms a manifold.
Provided that unregularised gradient flow converges to a nonsingular point, we can apply our results
locally. These results state that, in the second, slow phase of the dynamics, the trajectories minimise
∥U∥2F + ∥V ∥2F on M⋆. Recall that for a given matrix M ∈ Rn×m, we have

∥M∥∗ = min
UV ⊤=M

1

2
(∥U∥2F + ∥V ∥2F ),

where ∥M∥∗ is the nuclear norm [Srebro et al., 2004, Lemma 1]. Since minimising the nuclear norm
promotes low-rank solutions, this indicates a drift toward low-rank matrices during the slow phase of
the dynamics. In Appendix C, we study the more general class of matrix sensing problems and discuss
an important technical subtlety: the set M⋆ forms a manifold only after excluding degenerate points.
Handling those singularities is highly non-trivial and remains an open direction for future work.

Figure 2 below empirically confirms this grokking for matrix completion. We here randomly
generate a rank 3 ground truth matrix M⋆ ∈ R20×20, with non-zero singular values σ⋆

1 , σ
⋆
2 , σ

⋆
3 . We

randomly sample 50% of the entries to define the observed entries Ω. We then perform gradient
descent with weight decay parameter λ = 10−3 and stepsize γ = 10−2 on the loss F (U, V )
defined in Equation (8) and where the weights U, V ∈ R20×10 are initialised with i.i.d. standard
Gaussian entries. We then track the training loss, the unmasked test loss ∥M⋆ − UV ⊤∥F , the weight
norms ∥w∥2 = ∥U∥2F + ∥V ∥2F , and singular values of the reconstruction matrix UV ⊤. Additional
experimental details can be found in Appendix D.1.
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Training time t

Figure 2: Low-rank matrix completion. (Left): Grokking phenomenon: the training loss drops
quickly to zero, while the test loss remains high for an extended period before eventually improv-
ing—coinciding with a decrease in the norm of the weights ∥w∥2 = ∥U∥2F +∥V ∥2F . (Right): Singular
values of UV ⊤ over time. Each line corresponds to the i-th singular value of UV ⊤. The singular
values rapidly converge to large positive values at time t ≈ 1. However, as grokking starts around
time t ≈ 102, all but three begin decay towards zero. The remaining three approach the true singular
values σ⋆

1 , σ⋆
2 , and σ⋆

3 .

Explaining the observed grokking phenomenon. At time t = 0, the weights are randomly initialised
and the training loss is high. Initially, the regularised and unregularised weights follow the same trajec-
tory, and the training loss quickly drops to zero: the regularised iterates converge to the same solution
as the unregularised gradient flow. This early solution has a high norm, large singular values, and poor
generalisation performance. As training continues, around time t = 1/λ, the weight norms begin
to decrease. By t ≈ 104, the parameters have drifted to a new solution that still achieves zero training
loss but has a much lower norm and actually coincides with the low rank ground truth matrix M⋆.

Two-layer ReLU network. Although our theoretical framework does not allow for non-smooth
architectures such as ReLU networks, we illustrate in Figure 3 that similar grokking dynamics can be
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Training time t

Figure 3: Two-layer ReLU network trained with gradient descent and small weight decay. (Left):
Grokking phenomenon: the training loss drops quickly to zero, while the test loss remains high for an
extended period before eventually improving—coinciding with a slow, steady decrease in the weight
norm. (Right): Snapshots of the network’s prediction function at various training times. The ground
truth teacher function (a sum of three ReLUs) is shown in dotted light blue, and the training samples
are shown as black crosses.

observed in this case. We train a two-layer ReLU network of the form fw(x) =
∑m

j=1 uj ReLU(vjx+

bj), with weights w = (u, v, b) where the outer layer is u ∈ Rm, the inner weight v ∈ Rm and bias
b ∈ Rm. The teacher function f is a sum of 3 ReLUs and is represented in dotted light blue in Figure 3.
We generate a training dataset of n = 10 points by sampling xi uniformly in [−2, 2] and computing
yi = f(xi). These training points are shown as black crosses in Figure 3. We train the student network
with m = 100 by minimising the squared loss F (w) = 1

2n

∑n
i=1 (fw(xi)− yi)

2 using gradient
descent with weight decay λ = 10−3 for T = 106 iterations and small step size. The initial weights
are independently sampled from a Gaussian of variance 4. At each iteration, we record the train loss,
the ℓ2-norm of the weights, as well as the test loss over a fixed test dataset (plotted Figure 3, left).

Explaining the observed grokking phenomenon. At time t1 = 0, the weights are randomly initialised
and the training loss is high. By t2 = 1, the training loss has dropped to nearly zero, and the iterates
closely approximate the solution that would be obtained by unregularised gradient flow, this solution
does not have a low norm and generalises poorly. Subsequently, around time t = 1/λ, the weight
norms begin to decrease, and by t3 ≈ 105, they have drifted to a zero training loss solution which
has a much lower ℓ2-norm and which generalises much better. Such solutions are believed to have a
small number of "kinks" [Savarese et al., 2019, Parhi and Nowak, 2021, Boursier and Flammarion,
2023], as observed in Figure 3 (far right plot).

Diagonal Linear Networks. We also study—both as an application of Theorem 1 and numer-
ically—the architecture of diagonal neural networks in Appendices C and D.2, which serve as a
toy problem for neural network training dynamics. In that case grokking promotes sparse estimators.

6 Conclusion

This work presents a rigorous and general optimisation-based description of the grokking phenomenon
as a two-timescale process. In the fast initial phase, parameters evolve according to the unregularised
flow until reaching a stationary manifold. In the slower second phase, they follow the Riemannian
gradient flow of the norm constrained to this manifold. Grokking naturally emerges from a gradual
simplicity bias: starting from a poorly generalising solution recovered by unregularised gradient
flow, the slow phase driven by weight decay gradually simplifies the model by reducing its norm,
ultimately leading to better generalisation.

While prior work has extensively analysed the first phase via the implicit bias of optimisation
algorithms, the second phase—norm minimisation constrained to the interpolation manifold—has
received little attention. Our framework highlights the critical role of this phase and motivates further
study of optimisation dynamics on interpolation manifolds.

Large initialisations (NTK regime) are known to yield poor generalisation [Chizat et al., 2019, Liu
et al., 2022c], while small initialisations (rich regime) can lead to slow convergence or convergence
to suboptimal solutions for the training loss [Boursier and Flammarion, 2024a,b]. Grokking may
offer a desirable compromise, achieving fast convergence to an interpolating solution while retaining
strong generalisation.
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Lastly, our analysis focuses on regression settings with bounded dynamics. In classification tasks,
by contrast, the stationary manifold lies “at infinity” once interpolation is achieved. Extending our
approach to such settings remains an open and promising direction for future work, likely requiring
techniques tailored to classification losses.
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A Main proofs

A.1 Proof of Proposition 1

Proposition 1. If Assumption 1 holds, then for all T ≥ 0, wλ −→
λ→0

wGF in (C0([0, T ],Rd), ∥ · ∥∞)

Proof. We first need to restrict the dynamics of (wλ(t)) to some compact of Rd. Without loss of
generality we can inflate the compact in Assumption 1, so that we can assume there is some compact
K of Rd such that for all t ≥ 0, B(wGF(t), 1) ⊂ K, where B(wGF(t), 1) is the ball of radius 1
centered at wGF(t). We also define for any λ > 0, Tλ = inf{t ∈ R+ | wλ(t) ̸∈ K}.

Thanks to the continuity of ∇2F , ∇F is c-Lipschitz on K, i.e.,

∥∇F (w)−∇F (w′)∥ ≤ c∥w − w′∥ for any w,w′ ∈ K.

We then derive the following inequalities for all t ∈ [0, Tλ),

∥∥wλ(t)− wGF (t)
∥∥ =

∥∥∥∥
∫ t

0

ẇλ(s)− ẇGF (s)ds

∥∥∥∥

=

∥∥∥∥
∫ t

0

∇F (wGF (s))−∇F (wλ(s))− λwλ(s)ds

∥∥∥∥

≤
∫ t

0

∥∥∇F (wGF (s))−∇F (wλ(s))
∥∥ds+ λ

∫ t

0

∥wλ(s)∥ds

≤ c

∫ t

0

∥∥wλ(s)− wGF (s)
∥∥ds+ λt sup

w∈K
∥w∥.
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The integral form of Grönwall inequality1 – also called Grönwall-Bellman inequality – then leads to
the following inequality for any t ∈ [0, Tλ):∥∥wλ(t)− wGF (t)

∥∥ ≤ λtect sup
w∈K

∥w∥. (9)

In particular for a fixed T ∈ R+, there is a λ⋆ > 0 small enough such that for any λ ≤ λ⋆,
∀t ∈ [0, T ], λtect sup

w∈K
∥w∥ < 1.

Given the definition of Tλ, Equation (9) and the fact that
⋃

t∈R+
B(wGF(t), 1) ⊂ K, this then implies

that for any λ ≤ λ⋆, Tλ > T . In particular, for any λ ≤ λ⋆, Equation (9) becomes

sup
t∈[0,T ]

∥∥wλ(t)− wGF (t)
∥∥ ≤ λTecT sup

w∈K
∥w∥.

Proposition 1 then directly follows.

A.2 Junction between fast and slow dynamics

In the limit λ → 0, the whole fast dynamics described by Proposition 1 is crushed into the t = 0
point of the slow timescale. While Sections 4.1 and 4.2 respectively provide descriptions of the fast
and slow timescale dynamics, one needs to control the junction of these two dynamics. This junction
is made possible by Lemma 2 below, as well as a timeshift argument in the proof of Proposition 2.
Lemma 2. If Assumption 1 holds, there exists a function t(λ) such that limλ→0 t(λ) = 0 and

lim
λ→0

w̃λ(t(λ)) = lim
t→∞

wGF(t).

Lemma 2 states that for a well chosen timepoint t(λ), which is of order −λ ln(λ), the slow dynamics
solution w̃λ will be close to the limit of the unregularised flow at that timepoint. This result will then
be key in showing that limλ→0 w̃

λ admits a right limit in 0, which is given by limt→∞ wGF(t).

Note that this order −λ ln(λ) for t(λ) is necessary: a smaller value of t(λ) would not allow enough
time for the flow to approach the limit of the unregularised gradient flow; while a larger value would
correspond to a time where the regularised flow significantly drifted from the unregularised one.

This time −λ ln(λ) can indeed be seen, in the fast timescale, as the point where the dynamics transition
from mimicking the unregularised flow, to the slow dynamics that minimises the regularisation term
within some manifold.

Proof. Equation (9) in the proof of Proposition 1 yields that for any t ∈ [0, Tλ],∥∥wλ(t)− wGF (t)
∥∥ ≤ λtect supw∈K ∥w∥. We can then define t(λ) = −λ lnλ

2c > 0 and observe
that for any t ≤ min(Tλ,

t(λ)
λ ),

∥wλ(t)− wGF (t)∥ ≤ t(λ)ec
t(λ)
λ sup

w∈K
∥w∥

=
−
√
λ ln(λ)

2c
sup
w∈K

∥w∥.

Since
√
λ ln(λ) −→

λ→0
0, we have for λ small enough that the above term is smaller than 1. In particular

for λ small enough, Tλ ≥ t(λ)
λ . From there, Equation (9) yields at t(λ)

λ for any small enough λ > 0

∥w̃λ(t(λ))− lim
t→∞

wGF (t)∥ ≤ ∥w̃λ(t(λ))− wGF (
t(λ)

λ
)∥+ ∥wGF (

t(λ)

λ
)− lim

t→∞
wGF (t)∥

≤ −
√
λ ln(λ)

2c
sup
w∈K

∥w∥+ ∥wGF (
t(λ)

λ
)− lim

t→∞
wGF (t)∥.

Now note that our choice of t(λ) is such that both the first and second term in the last inequality
converge to 0 — indeed, t(λ)ec

t(λ)
λ = −

√
λ ln(λ)
2c −→

λ→0
0 and t(λ)

λ −→
λ→0

+∞ — which concludes the

proof.
1The more classical form of Grönwall inequality cannot be directly used here, since

∥∥wλ(t)− wGF (t)
∥∥

might be non-differentiable at some points.
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A.3 Proof of Proposition 2

The main element to prove Proposition 2 is Lemma 4 below. We first need to state another auxiliary
lemma, given by Lemma 3 below, and proven in Appendix B.5.

Lemma 3. Consider Assumptions 1 and 2. Let (uλ)λ>0 be a family of solutions of the following
ODE for any λ > 0 and t ≥ 0,

u̇λ(t) = −uλ(t)− 1

λ
∇F (uλ(t)).

If also uλ(0) → u0 ∈ M, then there exists a neighbourhood U of M such that Φ is C2 on U and for
every ε > 0, there exists a family of neighbourhoods (Uε)ε>0 of M such that

1. Uε ⊆ Uε′ ⊂ U for any ε < ε′;

2. there exists λ(ε) > 0 such that for any λ ≤ λ(ε), the trajectory (uλ(t))t≥0 is contained in
Uε;

3.
⋂

ε>0 Uε = M.

Note that the existence of a neighbourhood U in Lemma 3 is guaranteed by Lemma 1. We can now
state our key lemma.

Lemma 4. Consider Assumptions 1 and 2. Let (uλ)λ>0 be a family of solutions of the following
ODE for any λ > 0 and t ≥ 0,

u̇λ(t) = −uλ(t)− 1

λ
∇F (uλ(t)).

If also uλ(0) → u0 ∈ M, then uλ converges uniformly, as λ → 0, on any interval of the form [0, T ]
to the function u defined as the solution of the following ODE:

u(0) = u0

u̇(t) = −DΦu(t)(u(t)).

Proof. First consider a neighbourhood U of M such that Φ is C2 on U and Lemma 3 holds. From
there thanks to Lemma 3, we can assume that λ > 0 is chosen small enough so that uλ(t) ∈ U for
any t ∈ R+. We can now compute the time derivative of Φ(uλ(t)), using the chain rule for any
t ∈ R+ and λ small enough:

Φ̇(uλ(t)) = −DΦuλ(t) ·
(
uλ(t) +

1

λ
∇F (uλ(t))

)
.

Then using the fact that for any w ∈ U , DΦ(w) · ∇F (w) = 0 [Li et al., 2021, Lemma C.2],

Φ̇(uλ(t)) = −DΦuλ(t) · uλ(t). (10)

It now remains to show that uλ(t) → M as λ → 0, to guarantee that Φ(uλ(t)) and uλ(t) have the
same limit, which will be done using Lemma 3.

Thanks to Lemma 3, we can consider a family of neighbourhoods (Uε)ε>0 of M and a function
λ : R∗

+ → R∗
+ satisfying Lemma 3. As we can always take a smaller choice for any value λ(ε), we

can also choose the function λ so that

• it is non-decreasing;

• limε→0 λ(ε) = 0.

For the remaining of proof, define the function H : w 7→ −DΦw · w and take ε(λ) = inf{ε > 0 |
λ ≤ λ(ε)}. We consider in the following λ small enough so that ε(λ) is defined and finite. Since
limε→0 λ(ε) = 0, ε(λ) > 0 for any λ > 0. The function ε is non-increasing, so it admits a limit at 0.
Moreover for any δ > 0, ε(λ(δ)) ≤ δ by definition, sot that limλ→0 ε(λ) = 0.
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Thanks to Lemma 3, (uλ(t))t≥0 is contained in Uε(λ). By monotonicity of ∥w̃◦∥2, the trajectory
(w̃◦(t))t≥0 is bounded. Moreover, the trajectory of w̃λ(t) is also bounded independently of λ thanks
to Lemma 7. We can thus consider a compact K of Rd such that for any t ≥ 0 and λ > 0, w̃◦(t) ∈ K
and w̃λ(t) ∈ K.

Recall that Φ is the identity function on M and is C2 on U . In consequence, we have2

supw∈K∩Uε(λ)
∥Φ(w)− w∥2 −→

λ→0
0.

Summing over Equation (10) yields for any t ≥ 0:

uλ(t) =

∫ t

0

H(uλ(s))ds+ uλ(t)− Φ(uλ(t)) + Φ(uλ(0)).

Since Φ is C2 on U , H is c-Lipschitz on K, for some c > 0. A comparison with u then yields for any
0 ≤ t ≤ Tλ

∥uλ(t)− u(t)∥ ≤
∫ t

0

∥H(uλ(s))−H(u(s))∥ds+ ∥uλ(t)− Φ(uλ(t))∥+ ∥Φ(uλ(0))− u0∥

≤ c

∫ t

0

∥uλ(s)− u(s)∥ds+ sup
w∈K∩Uε(λ)

∥Φ(w)− w∥+ ∥Φ(uλ(0))− u0∥.

Similarly to the proof of Proposition 1, an integral form of Grönwall inequality yields for any
t ∈ [0, Tλ)

∥uλ(t)− u(t)∥ ≤
(

sup
w∈K∩Uε(λ)

∥Φ(w)− w∥+ ∥Φ(uλ(0))− u0∥
)
ect. (11)

Noting that the multiplicative term supw∈K∩Uε(λ)
∥Φ(w)− w∥+ ∥Φ(uλ(0))− u0∥ goes to 0 as λ

goes to 0 allows to conclude on the uniform convergence of uλ to u on [0, T ].

Proposition 2. If Assumptions 1 and 2 hold, then for all T, ε > 0, we have w̃λ −→
λ→0

w̃◦ in

(C0([ε, T ],Rd), ∥ · ∥∞), where w̃◦ is the unique solution on R+ of the differential equation (6).

Proof. Consider the shifted slow dynamics ṽλ for any t ≥ 0 as ṽλ(t) = w̃λ(t + t(λ)) with t(λ)
given by Lemma 2. Using Lemma 2, ṽλ then follows the following ODE:

˙̃vλ(t) = −ṽλ(t)− 1

λ
∇F (ṽλ(t)),

with an initial condition satisfying limλ→0 ṽ
λ(0) = Φ(w0).

We can then direct apply Lemma 4 above on ṽλ, which yields that ṽλ converges uniformly on any
interval of the form [0, T ] to w̃◦.

Proposition 2 is then obtained by observing that limλ→0 t(λ) = 0, so that for any ε > 0 and λ small
enough such that t(λ) ≤ ε, it holds for any t ∈ [ε, T ]

∥w̃λ(t)− w̃◦(t)∥ = ∥ṽλ(t− t(λ))− w̃◦(t)∥
≤ ∥ṽλ(t− t(λ))− w̃◦(t− t(λ))∥+ ∥w̃◦(t)− w̃◦(t− t(λ))∥.

The first term converges to 0 uniformly for t ∈ [ε, T ] by uniform convergence of ṽλ towards w̃◦;
and the second term also goes uniformly to 0 by (uniform) continuity of w̃◦ on the considered
interval.

2This is a direct consequence of Taylor’s expansion taken at the euclidean projection of w on M and the fact
that limλ→0 ε(λ) = 0.
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A.4 Proof of Proposition 3

Proposition 3. If Assumptions 1 and 2 hold, then for any sequence (λk)k∈N such that λk →
k→∞

0,

the limit points of (limt→∞ wλk(t))k∈N are included in the KKT points of Equation (7).

Proof. By definition [see e.g., Bergmann and Herzog, 2019], the KKT points of Equation (7) are the
points w⋆ ∈ M satisfying

gradMℓ2(w
⋆) = 0.

Since gradMℓ2 = PKer(∇2F (w⋆)), KKT points of Equation (7) are the points w⋆ ∈ M satisfying

w⋆ ∈ Ker(∇2F (w⋆))⊥. (12)

Thanks to Lemma 7, the trajectories (wλ(t))t≥0 are all bounded and wλ
∞ := limt→∞ wλ(t) exists

for any λ > 0. In particular, this limit is a stationary point of the regularised loss Fλ, i.e.,

∇F (wλ
∞) + λwλ

∞ = 0.

In particular, wλ
∞ = − 1

λ∇F (wλ
∞).

Let (λk)k∈N be a sequence in R∗
+ such that λk −→

k→∞
0. Let w⋆ be an adherence point of the sequence

(wλk∞ )k. Thanks to Lemma 3, w⋆ ∈ M. Moreover, the equality wλk∞ = − 1
λk

∇F (wλk∞ ) first implies
that ∥∇F (wλk∞ )∥ = O (λk). Rebjock and Boumal [2024, Proposition 2.8] then also implies that

d(wλk
∞ ,M) = O (λk) .

Moreover, noting wk = arg min w∈M∥wλk∞ −w∥ the projection of wλk∞ onto M, a Taylor expansion
yields

1

λ
∇F (wλk

∞ ) =
1

λ
∇F (wk) +

1

λ
∇2F (wk)

⊤(wλk
∞ − wk) + o(

∥wλk − wk∥
λk

)

=
1

λ
∇2F (wk)

⊤(wλk
∞ − wk) + o(

d(wλk∞ ,M)

λk
)

=
1

λ
∇2F (wk)

⊤(wλk
∞ − wk) + o(1).

The equality wλk∞ = − 1
λk

∇F (wλk∞ ) then implies that

− lim
k→∞

∇2F (wk)
⊤wλk∞ − wk

λk
= w⋆. (13)

Let uk = PKer(∇2F (wk))
w

λk
∞ −wk

λk
. Note that

∇2F (wk)
⊤wλk∞ − wk

λk
= ∇2F (wk)

⊤uk

and ∥∇2F (wk)
⊤uk∥ ≥ η∥uk∥,

thanks to Assumption 2. In consequence, (uk)k is bounded. In particular, it admits an adherence
point u∞ ∈ Rd.

Since wk →
k→∞

w⋆ and ∇2F is continuous, ∥∇2F (wk)−∇2F (w⋆)∥ →
k→∞

0. So that Equation (13)

becomes
−∇2F (w⋆)⊤u∞ = w⋆.

In particular, it yields that w⋆ ∈ Im(∇2F (w⋆)). By symmetry of the Hessian, Im(∇2F (w⋆)) =
Ker(∇2F (w⋆))⊥ so that the adherence point w⋆ of (wλk∞ )k satisfies the KKT conditions of Equa-
tion (7), which are equivalent to
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A.5 Proof of Proposition 4

Proposition 4. Let Assumptions 1 and 2 hold and, assume additionally that w◦(t) converges towards
a strict local minimum w⋆ of the constrained problem (7). Then limλ→0 limt→∞ wλ(t) = w⋆.

Proof. For this proof, denote w⋆ = limt→∞ w̃◦(t) and F ⋆ = F (w⋆). w⋆ is a strict local minimum
of the Euclidean norm on M. Moreover using the Morse Bott property [Assumption 2 and see
Rebjock and Boumal, 2024], we can consider an arbitrarily small δ > 0 such that the following
conditions simultaneously hold in B(0, δ) for some β > 0:

∀w ∈ M∩B(0, 2δ), w ̸= w⋆ =⇒ ∥w⋆∥2 < ∥w∥2,
∀w ∈ B(0, δ), F (w)− F ⋆ ≥ η

4
d(w,M)2, (14)

∀w ∈ B(0, δ), β(F (w)− F ⋆) ≥ ∥∇F (w)∥22 ≥ η(F (w)− F ⋆).

First observe that the strict minimality assumption implies, through Lemma 8, that there exists ε0 > 0
(independent of λ) such that for a small enough λ > 0

inf
∂B(w⋆,δ)

Fλ(w) > F ⋆ + λ
∥w⋆∥2

2
+ λε0. (15)

Now fix an arbitrarily small δ′ ∈ (0, δ). Let t0 ∈ R∗
+ such that ∥w̃◦(t0)− w⋆∥ ≤ δ′

4 . By pointwise
convergence of w̃λ(t0) to w̃◦(t0), we then have that for λ > 0 small enough, ∥w̃λ(t0)− w⋆∥ ≤ δ′

2 .
Without loss of generality, we can even choose t0 large enough and λ small enough so that for some
arbitrarily fixed ε > 0,

Fλ(w̃
λ(t0)) ≤ F ⋆ + ε. (16)

From there, we define for this proof Tλ = inf{t ≥ t0 | w̃λ(t) ̸∈ B(w⋆, δ′)}. Similarly to the proof
of Lemma 7, we have for any t ∈ ( t0λ ,

Tλ

λ ):

dFλ(w
λ(t))

dt
≤ −η(Fλ(w

λ(t))− F ⋆) + λ(R1 +
η

2
R2),

where R1 = supw∈B(w⋆,δ′) ∥w∥∥∇F (w)∥ and R = supw∈B(w⋆,δ′) ∥w∥. Again, a Grönwall argu-
ment implies that for any t ∈ [ t0λ ,

Tλ

λ ],

Fλ(w
λ(t)) ≤ εe−η(t− t0

λ ) + λ

(
R2

2
+

R1

η

)
.

In particular, if we define t′ = min( t0λ − ln(λ)
η , Tλ

λ ), we have similarly to the proof of Lemma 7 that
for any t ∈ [ t0λ , t

′]: ∥∥∥∥wλ(t)− wλ(
t0
λ
)

∥∥∥∥ ≤ β
√
ε
2

η
− C

√
λ ln(λ),

for some constant C independent of ε and λ. In particular, we can choose ε and λ small enough so
that this quantity is smaller than δ

2 . It then implies that t′ < Tλ

λ and

Fλ(w
λ(t′)) ≤ F ⋆ + λ(

R1

η
+

R2

2
+ ε).

From there, by monotonicity of the loss, for any t ≥ t′:

Fλ(w
λ(t)) ≤ F ⋆ + λ(

R1

η
+

R2

2
+ ε).

Also note that R1

η + R2

2 →
δ′→0

∥w⋆∥2

2 . So we can choose δ′ and ε small enough so that

R1

η
+

R2

2
+ ε <

∥w⋆∥2
2

+ ε0.
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From there, the previous inequality implies that for any t ≥ t′,

Fλ(w
λ(t)) ≤ F ⋆ + λ(

∥w⋆∥2
2

+ ε0).

By continuity, Equation (15) then implies that for any t ≥ t′, wλ(t) ∈ B(w⋆, δ).

To summarise, we have shown that for any small enough δ > 0, there exists λ⋆(δ) and t′(λ, δ) such
that for any λ ≤ λ⋆(δ), limt→∞ wλ(t) ∈ B(w⋆, δ).

This means that limλ→0 limt→∞ wλ(t) = w⋆, which proves Proposition 4.
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B Auxiliary proofs

B.1 Proof of Lemma 1

Lemma 1. If Assumptions 1 and 2 hold, there exists an open neighbourhood U of M such that Φ is
defined and C2 on U .

Proof. First, we restrict ourselves to a bounded open set B of Rd and consider ϕ(·, t) as a function
B → Rd for any t.

The main point of the proof is to show that M∩B is geometrically stable in the sense of Falconer
[1983], i.e., that there exists a neighbourhood (in B) U of M∩B, t > 0 and k < 1 such that for any
w ∈ U ,

d(ϕ(w, t),M∩B) ≤ kd(w,M∩B) and ϕ(w, t) ∈ U,

where d(w,M∩B) = infx∈M∩B ∥w − x∥2.3

Let x ∈ M∩B. The Morse-Bott property (Assumption 2) implies that there exists a neighbourhood
U(x) ⊂ B of x, such that F satisfies the Polyak-Łojasiewicz (PL) inequality with constant η

2 , thanks
to the equivalences between both conditions [Rebjock and Boumal, 2024]

∥∇F (w)∥22 ≥ η(F (w)− F (x)) ∀w ∈ U(x). (17)

In the following, we define F ⋆ = F (x), which is the value of F on the manifold M (the definition
does not depend on the choice of x).

In particular, there is some δ0(x) > 0 such that B(x, δ0(x)) ⊂ U(x). Thanks to Rebjock and Boumal
[2024, Propositions 2.3 and 2.8, Remark 2.10], we can even choose δ0(x) small enough so that there
are some α, β such that

∥∇F (w)∥2 ≤ β
√
F (w)− F ⋆ for any w ∈ B(x, δ0), (18)

η

8
d(w,M)2 ≤ F (w)− F ⋆ ≤ αd(w,M)2for any w ∈ B(x, δ0). (19)

By boundedness of B, α and β can be chosen independently of x ∈ M∩B here.

Now let w ∈ B(x, δ0(x)) and define T (w) = inf{t ≥ 0 | ϕ(w, t) ̸∈ B(x, δ0(x))}. Necessarily,
T (w) > 0 and for any t ∈ [0, T (w)), Equation (17) applies to ϕ(w, t), so that for any t ∈ [0, T (w))

d(F (ϕ(w, t))− F ⋆)

dt
= −∥∇F (ϕ(w, t))∥2

≤ −η(F (ϕ(w, t))− F ⋆).

So that, for any t ∈ [0, T (w)):

F (ϕ(w, t))− F ⋆ ≤ (F (w)− F ⋆)e−ηt.

Moreover for any t ∈ [0, T (w)), Equation (18) also applies, so that

∥ϕ(w, t)− w∥ ≤
∫ t

0

∥∇F (ϕ(w, s))∥2ds

≤
∫ t

0

β
√
(F (w)− F ⋆)e−ηsds

≤ 2β

η

√
(F (w)− F ⋆).

By continuity of F , let δ(x) > 0 be small enough so that for any w ∈ B(x, δ(x)), δ(x) +
2β
η

√
(F (w)− F ⋆) ≤ δ0(x)

2 . The previous inequality then implies that for any w ∈ B(x, δ(x))

3The definition of Falconer [1983] is stated differently but is implied by our notion of geometric stability,
when taking f(w) = ϕ(w, t).
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and t ∈ [0, T (w)):

∥ϕ(w, t)− x∥ ≤ ∥w − x∥+ ∥ϕ(w, t)− w∥

≤ δ(x) +
2β(x)

η

√
(F (w)− F ⋆)

≤ δ0(x)

2
.

In particular, for any w ∈ B(x, δ(x)), T (w) = ∞ and ϕ(w, t) ∈ B(x, δ0(x)) for any t ≥ 0.

Also, note that ∥ϕ(w, t) − x∥ ≤ δ0(x)
2 and B(x, δ0(x)) ⊂ B implies that d(ϕ(w, t),M ∩ B) =

d(ϕ(w, t),M). From there, Equation (19) implies for any t ≥ 0 and w ∈ B(x, δ(x)):

d(ϕ(w, t),M∩B)2 ≤ 8

η
(F (ϕ(w, t))− F⋆)

≤ 8

η
e−ηt(F (w)− F ⋆)

≤ 8α

η
e−ηtd(w,M∩B)2.

In particular, for any k ≥ 0, we can choose a sufficiently large t such that d(ϕ(w, t),M ∩ B) ≤
kd(w,M∩B).

By compactness of M ∩ B, there is a finite family of (xi)i∈[K] ∈ M ∩ B such that⋃
i∈[K] B(xi,

1
2δ(xi)) ⊇ M ∩ B. We then define U(B) =

⋃
i∈[K] B(xi, δ(xi)), which is also

a finite covering of M ∩ B. We then take t large enough such that for any w ∈ U(B),
d(ϕ(w, t),M ∩ B) ≤ kd(w,M ∩ B) for k <

mini∈[K] δ(xi)

maxi∈[K] δ(xi)
. In particular, our choice of k is

such that, for f : w 7→ ϕ(w, t), U(B) is invariant by f . Indeed, note that for any w ∈ U(B),

d(f(w),M∩B) ≤ kd(w,M∩B)

≤ mini∈[K] δ(xi)

maxi∈[K] δ(xi)
d(w,M∩B)

≤ 1

2
min
i∈[K]

δ(xi).

In other words, there is x ∈ M ∩ B such that ∥f(w) − x∥ ≤ 1
2 mini∈[K] δ(xi). Moreover since⋃

i∈[K] B(xi,
1
2δ(xi)) is a covering of M∩B, there is j ∈ [K] such that ∥x−xj∥ < 1

2 mini∈[K] δ(xi)

and by triangle inequality:
∥w − xj∥ < δ(xj),

i.e., w ∈ U(B).

Since U(B) is invariant by f and k < 1, M∩B is geometrically stable, so that we can apply Falconer
[1983, Theorem 6.3 and Theorem 5.1]. It then implies that Φ is C2 on U(B). Taking an increasing
sequence of open bounded sets Bn covering whole Rd, we can then define U =

⋃
n U(Bn) and

conclude that Φ is C2 on U .

B.2 Minimality of F on neighbourhood

Lemma 5. Consider Assumptions 1 and 2. Let U be an open neighbourhood of M such that Φ is
continuous on U , then necessarily for any w ∈ U \M, F (w) = supx∈M F (x).

Proof. By definition of M, F is constant on M so that supx∈M F (x) = infx∈M F (x) = F ⋆.
Moreover Φ(M) = M and by continuity, Φ(U) ⊂ M.
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For any w ∈ U \M, note that

w − Φ(w) = −
∫ ∞

0

∇F (ϕ(w, t))dt,

F (w)− F ⋆ = F (ϕ(w, 0))− F (Φ(w)) = −
∫ ∞

0

∥∇F (ϕ(w, t))∥2dt.

The first equality is the definition of Φ(w), while the second comes from deriving over time the
function t 7→ F (ϕ(w, t)) and noting that Φ(w) ∈ M.

In particular, for any w ∈ U \M, w − Φ(w) ̸= 0, so that the second integral is also non-zero. In
particular, F (w) > F ⋆ for any w ∈ U \M.

B.3 Alternative equation for w̃◦

Lemma 6. If Assumption 2 holds, the unique solution of Equation (6) also corresponds to the unique
solution of the following equation:

˙̃w◦(t) = −DΦw̃◦(t)(w̃
◦(t)) and w̃◦(0) = Φ(w0).

Proof. This is a direct consequence of the two following equalities for any w ∈ M:

gradM ℓ2(w) = PKer(∇2F (w))(w)

= DΦw(w).

The first one is a consequence of the definition of the Riemannian gradient and the fact that TM(w) =
Ker(∇2F (w)) [see e.g., Boumal, 2023, Theorem 3.15 with ∇F being the local defining function of
M]. The second one is given by Li et al. [2021, Lemma 4.3].

B.4 Bounding the trajectories

Lemma 7. If Assumptions 1 and 2 hold, there exists a compact K of Rd such that for any λ > 0 and
t ≥ 0, wλ(t) ∈ K.
In particular, limt→∞ wλ(t) exists for any λ > 0.

Proof. Similarly to the proof of Lemma 1, we can consider a neighbourhood U of M where the PL
inequality holds:

∥∇F (w)∥22 ≥ η(F (w)− F ⋆) ∀w ∈ U.

Additionally, we can consider δ > 0 such that B(Φ(w0), δ) ⊂ U and

∥∇F (w)∥2 ≤ β
√

F (w)− F ⋆ for any w ∈ B(Φ(w0), δ).

1) For some fixed ε > 0, Lemma 2 then implies there is a λ⋆ > 0 and times t(λ) such that for any
λ ∈ (0, λ⋆) both hold

∥wλ(
t(λ)

λ
)− Φ(w0)∥ <

δ

2
and Fλ(w

λ(
t(λ)

λ
))− F (Φ(w0)) ≤ ε.

Moreover, the proof of Lemma 2 also implies that there is some compact K1 of Rd such that for any
λ < λ⋆ and t ≤ t(λ)

λ , wλ(t) ∈ K1.

2) Now fix λ < λ⋆ and define Tλ = inf{t ≥ t(λ)
λ | wλ(t) ̸∈ B(Φ(w0), δ)}. By continuity, Tλ > t(λ)

λ .
The PL inequality then applies for any t ∈ [ t(λ)λ , Tλ):

∥∇F (wλ(t))∥22 ≥ η(F (wλ(t))− F ⋆).
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In particular, this allows to derive the following inequalities for any t ∈ [ t(λ)λ , Tλ):

dFλ(w
λ(t))

dt
= −∥∇Fλ(w

λ(t))∥22
≤ −∥∇F (wλ(t))∥2 + λ∥wλ(t)∥2∥∇F (wλ(t))∥2
≤ −∥∇F (wλ(t))∥22 + λ∥wλ(t)∥∥∇F (wλ(t))∥
≤ −η(F (wλ(t))− F ⋆) + λR1

≤ −η(Fλ(w
λ(t))− F ⋆) + λ(R1 +

η

2
R2),

where R1 = supw∈B(Φ(w0),δ) ∥w∥∥∇F (w)∥ and R = supw∈B(Φ(w0),δ) ∥w∥. In particular, Grön-

wall inequality implies that for any t ∈ [ t(λ)λ , Tλ)

Fλ(w
λ(t))− F ⋆ ≤

(
Fλ(w

λ(
t(λ)

λ
))− F ⋆

)
e−η(t− t(λ)

λ ) + λ(
R1

η
+

1

2
R2)

≤ εe−η(t− t(λ)
λ ) + λ(

R1

η
+

1

2
R2). (20)

Define t′ = min( t(λ)λ + − ln(λ)
η , Tλ). Using Equation (18) for any t ∈ ( t(λ)λ , t′]:

wλ(t)− wλ(
t(λ)

λ
) =

∫ t

t(λ)
λ

∇Fλ(w
λ(s))ds

∥∥∥∥wλ(t)− wλ(
t(λ)

λ
)

∥∥∥∥ ≤
∫ t′

t(λ)
λ

∥∇Fλ(w
λ(s))∥ds

≤ β

∫ t′

t(λ)
λ

√
F (wλ(s))− F ⋆ds.

From there, Equation (20) yields for any t ∈ ( t(λ)λ , t′]:

∥∥∥∥wλ(t)− wλ(
t(λ)

λ
)

∥∥∥∥ ≤ β

∫ t′

t(λ)
λ

√
εe−

η
2 sds+ β(t′ − t(λ)

λ
)

√
λ(

R1

η
+

1

2
R2)

≤ β
√
ε
2

η
− C

√
λ ln(λ),

for some constant C, which is independent of both ε and λ. In particular, we can choose ε and λ⋆

small enough, so that ∥wλ(t)− wλ( t(λ)λ )∥ < δ
2 for any t ∈ ( t(λ)λ , t′]. By definition, this implies that

t′ < Tλ, i.e., for any t ∈ [ t(λ)λ , t′], wλ(t) ∈ B(Φ(w0), δ).

3) Since t′ < Tλ, t′ = t(λ)
λ + − ln(λ)

η by definition and

Fλ(w
λ(t′)) ≤ F ⋆ + λ(

R1

η
+

1

2
R2 + ε).

By monotonicity of the objective, we then have for any t ≥ t′:

Fλ(w
λ(t)) ≤ F ⋆ + λ(

R1

η
+

1

2
R2 + ε). (21)

Now define T̃λ = inf
{
t ≥ t(λ)

λ | uλ(t) ̸∈ U
}

. Since M minimizes F on U , Equation (21) implies

by continuity that for any t ∈ [t′, T̃λ]:

1

2
∥wλ(t)∥2 ≤ R1

η
+

1

2
R2 + ε.
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In particular, for K2 = B(0, 2R1

η +R2 + 3ε) and any t ∈ [t′, T̃λ], wλ(t) ∈ K2. By continuity and
compactness, infw∈(∂U)∩K2

F (w) > F ⋆ thanks to Lemma 5. In consequence, we can choose λ

small enough so that Equation (21) implies that for any t ∈ [t′, T̃λ],

F (wλ(t)) < inf
w∈(∂U)∩K2

F (w).

Assume now that T̃λ < ∞. Since wλ(T̃λ) ∈ K2, the previous inequality implies by continuity that
wλ(T̃λ) ̸∈ ∂U , i.e., wλ(T̃λ) ∈ Ů . This however contradicts the definition of T̃λ, so that T̃λ < ∞. In
particular for any t ≥ t′, wλ(t) ∈ K2.

To summarize, we have showed that there exists a small enough λ⋆, such that for any λ < λ⋆

1. wλ(t) is included in some compact K1 of Rd for t ≤ t(λ)
λ ;

2. wλ(t) is included in B(Φ(w0), δ) or t ∈ ( t(λ)λ , t′);

3. wλ(t) is included in some compact K2 of Rd for t ≥ t′;

where K1 and K2 are both independent of λ. In particular, there exists a compact K of Rd independent
of λ such that for any λ ≤ λ⋆, the trajectory of (wλ(t))t≥0 is included in K.

For λ ≥ λ⋆, we directly have by monotonicity of the objective that for any t ≥ 0

1

2
∥wλ(t)∥2 ≤ 1

2
∥wλ(0)∥2 + 1

λ

(
F (wλ(0))− F (wλ(t))

)

≤ 1

2
∥wλ(0)∥2 + 1

λ⋆
F (wλ(0),

so that the trajectory (wλ(t))t≥0 is also included in a compact independent of λ.

As a consequence, the definability assumption of Fλ along with the boundedness implies that
limt→∞ wλ(t) exists thanks to Kurdyka [1998, Theorem 2].

B.5 Proof of Lemma 3

Lemma 3. Consider Assumptions 1 and 2. Let (uλ)λ>0 be a family of solutions of the following
ODE for any λ > 0 and t ≥ 0,

u̇λ(t) = −uλ(t)− 1

λ
∇F (uλ(t)).

If also uλ(0) → u0 ∈ M, then there exists a neighbourhood U of M such that Φ is C2 on U and for
every ε > 0, there exists a family of neighbourhoods (Uε)ε>0 of M such that

1. Uε ⊆ Uε′ ⊂ U for any ε < ε′;

2. there exists λ(ε) > 0 such that for any λ ≤ λ(ε), the trajectory (uλ(t))t≥0 is contained in
Uε;

3.
⋂

ε>0 Uε = M.

Proof. We consider the neighbourhood U defined as in Lemma 7. By definition, F is constant on the
manifold M and denote its value F ⋆, i.e., F ⋆ = supw∈M F (w) = infw∈M F (w).

For any ε > 0, we define Uε as Uε = {w ∈ U | F (w) < F ⋆ + ε} and show that it satisfies these
three conditions. By continuity of F , Uε is a neighbourhood of M and the first condition is obviously
satisfied.

25



Thanks to Lemma 5, for any w ∈ U \M, F (w) > F ⋆. This implies the third condition,
⋂

ε>0

Uε = M.

The arguments of Lemma 7 extend to any family of solutions (uλ)λ>0 satisfying the assumptions of
Lemma 3. In consequence, we can consider a compact K of Rd such that for any t ≥ 0 and λ > 0,
uλ(t) ∈ K. From there, note again that infw∈(∂U)∩K F (w) > F ⋆.

Since uλ(0) → u0 ∈ M, we can then choose λ(ε) > 0 small enough, so that for any λ ∈ (0, λ(ε)],

F (uλ(0)) +
λ

2
∥uλ(0)∥22 < min(F ⋆ + ε, inf

w∈(∂U)∩K
F (w)).

By monotonicity of the objective over time, F (uλ(t)) + λ∥uλ(t)∥22 < min(F ⋆ +

ε, infw∈(∂U)∩K F (w)) for any t ≥ 0. Since uλ(t) is continuous, it implies that uλ(t) ∈
◦
Uε for

any t ≥ 0, which concludes the proof of Lemma 3.

B.6 Strict Minimality

Lemma 8. Under the same assumptions than Proposition 4 with w⋆ = limt→∞ w̃◦(t), there exists a
δ⋆ > 0 such that for any δ ∈ (0, δ⋆), there exists ε > 0 and λ⋆ > 0 such that for any λ ∈ (0, λ⋆)

inf
∂B(w⋆,δ)

Fλ(w) > F ⋆ + λ
∥w⋆∥2

2
+ λε. (22)

Proof. Let δ⋆ > 0 be such that for any w ∈ M∩ B(w⋆, 2δ⋆), w ̸= w⋆ =⇒ ∥w∥2 > ∥w⋆∥2 and
such that Equation (14) holds. Now let δ ∈ (0, δ⋆). We now fix λ⋆ > 0 arbitrarily small, choose
λ ∈ (0, λ⋆) and define

ε =
1

4
inf

u∈M
δ
2≤∥u−w⋆∥≤2δ

∥u∥22 − ∥w⋆∥22.

By strict minimality, compactness and continuity, ε > 0.

Let now w ∈ ∂B(w⋆, δ). We can decompose w as w = u+ v, where u ∈ arg min w′∈M∥w − w′∥.
Necessarily, ∥v∥ = d(w,M) ≤ δ and ∥w − w⋆∥ = δ. In particular, we also have 2δ ≥ ∥u− w⋆∥ ≥
δ − ∥v∥. From there, using the quadratic growth property (Equation 14):

Fλ(w) ≥ F (w) +
λ

2
(∥u∥ − ∥v∥)2

≥ F ⋆ +
η

4
d(w,M)2 +

λ

2
(∥u∥2 − 2∥u∥∥v∥)

≥ Fλ(w
⋆) +

η

4
d(w,M)2 − λ(∥w⋆∥+ 2δ)∥v∥+ λ

2
(∥u∥2 − ∥w⋆∥2).

Let c(ε, δ) = min( δ2 ;
ε

∥w⋆∥+2δ ) > 0. There are two cases.

1) Either ∥v∥ ≤ c(ε, δ), in which case 2δ ≥ ∥u− w⋆∥ ≥ δ
2 , so that by definition of ε

Fλ(w) ≥ Fλ(w
⋆)− λ(∥w⋆∥+ 2δ)∥v∥+ λ

2
(∥u∥2 − ∥w⋆∥2)

≥ Fλ(w
⋆)− λ(∥w⋆∥+ 2δ)c(ε, δ) +

λ

2
· 4ε

≥ Fλ(w
⋆) + λε.

2) Or ∥v∥ ≥ c(ε, δ), in which case we simply have, also using that ∥v∥ ≤ δ:

Fλ(w) ≥ Fλ(w
⋆) +

η

4
∥v∥2 − λ(∥w⋆∥+ 2δ)∥v∥

≥ Fλ(w
⋆) +

η

4
c(ε, δ)2 − λ(∥w⋆∥+ 2δ)δ.
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In particular, choosing λ⋆ small enough – depending on η, ε and δ – we have for any λ ≤ λ⋆ that
η

4
c(ε, δ)2 − λ(∥w⋆∥+ 2δ)δ ≥ λε.

So that in both cases, Fλ(w) > F ⋆ + λ∥w⋆∥2

2 + λε.

27



C Applications

In this section, we provide additional details to the examples discussed in Section 5, and specify how
our theoretical results can be applied in various settings.

Linear regression. We consider F (w) = ∥Xw − y∥22 with X ∈ Rn×d and n ≤ d; assume for
simplicity that X is full rank. In this setting, the dynamics can be computed explicitely to illustrate
our result.

Denote the solution of minimal ℓ2 norm with w⋆ = X+y, where X+ is the Moore-Penrose pseudoin-
verse of X . The problem is convex and the critical set of F is the affine subspace M = w⋆+Ker(X),
which is a manifold: Assumption 2 is satisfied.

Consider the singular value decomposition X = UΣV ⊤ where U ∈ Rn×d, V ∈ Rd×d are orthogonal
and Σ = diag(σ1, . . . , σd) with σn+1 = · · · = σd = 0. We make the change of coordinates
z = V ⊤w, and notice that in this basis the minimum norm solution z⋆ = V ⊤w⋆ is of the form
z⋆ = (z⋆1 , . . . z

⋆
n, 0, . . . , 0). Then, we can compute the trajectory of the gradient flow on Fλ initialized

at z(0) = V ⊤w0:

• for 1 ≤ i ≤ n,

zλi (t) = zλ,∞i + e−(σ2
i+λ)t

(
zi(0)− zλ,∞i

)
with zλ,∞i =

σ2
i

σ2
i + λ

z⋆i , (23)

• for (n+ 1) ≤ i ≤ d,
zλi (t) = e−λtzi(0). (24)

Eq. (23) describes the dynamics along the directions orthogonal to M, and Eq. (24) along those
parallel to M. When λ → 0, the first is much faster than the second. In the first phase, the

iterates converge to (zλ,∞1 , . . . zλ,∞n , zn+1(0), . . . , zd(0))
λ→0≈ (z⋆1 , . . . z

⋆
n, zn+1(0), . . . , zd(0)); this

is the limit of unregularised gradient flow zGF (which is also here the projection of the initial point
onto M). In the second phase, the iterates converge slowly towards the mimimum norm solution
(z⋆1 , . . . z

⋆
n, 0, . . . , 0).

Diagonal linear networks (DLNs). DLNs serve as a toy example to understand the influence of
the architecture on the training dynamics of neural networks [Pesme, 2024]. The corresponding
optimization problem writes

min
(w1,w2)∈R2d

∥X(w1 ⊙ w2)− y∥22,

where ⊙ denotes the componentwise product, and X ∈ Rn×d is the feature matrix with n ≤ d, which
we assume to be full rank. It is usually convenient to perform a rotation of the coordinates and rewrite
the problem as

min
(u,v)∈R2d

F (u, v) = ∥X(u2 − v2)− y∥22,

where u2, v2 denotes the componentwise square. The critical set of F is composed of the couples
(u, v) satisfying

u⊙
[
X⊤(X(u2 − v2)− y)

]
= 0,

v ⊙
[
X⊤(X(u2 − v2)− y)

]
= 0

(25)

This set has singularities for points who have null coordinates; if we exclude those problematic points,
we can show that it is a manifold.
Proposition 5. The set M∗ = ∇F−1(0) ∩ (R∗)2d is a smooth manifold of dimension 2d− n.

Proof. Let (ū, v̄) ∈ M∗. Denote W a neighborhood of (ū, v̄) such that U ⊂ (R∗)2d. The function
H : R2d → Rd with H(u, v) = X⊤(X(u2 − v2) − y) is a local defining function for M∗, in the
sense that for (u, v) ∈ W , we have (u, v) ∈ M∗ ⇐⇒ H(u, v) = 0.

The differential of H at (ū, v̄) is the linear map satisfying for (∆u,∆v) ∈ R2d

DH(ū, v̄)[∆u,∆v] = 2X⊤X(ū⊙∆u− v̄ ⊙∆v).
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It is clear that, since all coordinates of (ū, v̄) are nonzero, the map (∆u,∆v) 7→ ū⊙∆u− v̄ ⊙∆v
is a surjection on Rd, and therefore rank(DH(ū, v̄)) = rank(X⊤X) = n. This proves that M∗ is a
manifold of dimension 2d− n [Boumal, 2023, §3.2].

Because of the singular points in M, the function F does not satisfy Assumption 2 globally. However,
our results can still be applied locally: see the paragraph below for details.

Noting that, for a vector w ∈ Rd, we have

∥w∥1 = min
u,v∈Rd

∥u∥22 + ∥v∥22 subject to u2 − v2 = w,

we conclude that in the second, slow phase of the dynamics, the Riemannian gradient flow which
minimizes ∥u∥2 + ∥v∥2 on M∗ tends to drift towards solutions of low ℓ1 norm.

Low-rank matrix sensing/completion. Let A : Sn → Rm be a linear map on symmetric matrices
with m ≤ n2 and y ∈ Rm. For a given target rank r ≤ n, the matrix sensing problem is

min
W∈Rn×r

F (W ) = ∥A(WW⊤)− y∥22 (26)

A typical example is symmetric matrix completion, where the goal is to recover an unknown matrix
M∗ ∈ Rn×n from a subset of observed entries with coefficients in Ω ∈ {1 . . . n}2: the objective
function writes F (W ) =

∑
(i,j)∈Ω

(
(WW⊤)ij −M∗

ij

)2
. Note that the asymmetric case presented

in Section 5, Equation (8), can also be written as a symmetric matrix completion problem, by setting

W =

[
U
V

]
∈ R(n+m)×r,

and choosing a new mask Ω that selects only the off-diagonal blocks of WW⊤.

Usually, one looks for a low-rank solution to Problem (26), by setting r to a small value. Here, we
choose to rather study the overparameterised setting where r = n. Our results imply that, even
though we do not explicitly impose a low rank structure, the gradient flow trajectories Wλ are driven
towards a low-rank solution in the second phase of the dynamics.

Similarly to the example of diagonal linear networks, we show that, in the overparameterised setting,
the critical set of F is a manifold if we exclude singular matrices.
Proposition 6. Let F be the matrix sensing function defined in (26), and denote Rn×n

∗ the set of
invertible matrices of size n× n. If r = n, the set M∗ = ∇F−1(0) ∩ Rn×n

∗ is a smooth manifold.

Proof. The gradient of F is

∇F (W ) = 4A∗ (A(WW⊤)− y
)
W, ∀W ∈ Rn×n,

where A∗ : Rm → Sn is the adjoint of A.

Let W ∈ M∗, and let U a neighborhood of W such that U ⊂ Rn×n
∗ . For W ∈ U , W is invertible and

we have W ∈ M∗ if and only if A∗(A(WW⊤)−y) = 0. The function H(W ) = A∗(A(WW⊤)−y)
is therefore a local defining function for M∗. Its differential at W satisfies for U ∈ Rn×n,

DH(W )[U ] = A∗A(WU⊤ + UW
⊤
).

Since W is invertible, the map ϕ : U 7→ WU⊤ + UW
⊤

is a surjection from Rn×n onto Sn:
indeed, note that for any Z ∈ Sn, we have ϕ (U) = Z with U = 1

2Z(W
−1

)⊤. Therefore, the rank
of DH(W ) is equal to the rank of A∗A for any W ∈ M∗, which proves that M∗ is a smooth
manifold.

Dealing with singularities. In the last two examples, the set ∇F−1(0) has singular points, and so
Assumption 2 does not hold globally. However, we showed that it holds on “most of the space”, as
there exists a negligible set S such that M∗ = ∇F−1(0) \ S is a smooth manifold.

Our results can still be applied locally, assuming that the unregularised gradient flow wGF converges
to a point wGF

∞ ∈ M∗. Indeed, in that case there exists a neighborhood U of wGF
∞ such that

∇F−1(0) ∩ U is included in M∗. Then, the Morse-Bott property holds in this neighborhood.
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Consider then the Riemannian gradient flow w◦ of the ℓ2 norm on M∗ initialized at wGF
∞ . For any

time horizon T such that the trajectory of w◦ stays in U on the interval [0, T ], we can restrict our
analysis to this local region, where our assumptions are satisfied. We can then invoke Proposition 2
to conclude that w̃λ converges to w◦ uniformly on intervals of the form [ϵ, T ].

However, a key limitation arises when analyzing the long-time behavior: the results characterizing
the limit points ( Proposition 4) do not apply if w◦ converges to a singular point outside M∗. This
situation can occur, as singular points might correspond to points that minimize the ℓ2 norm on M∗

(e.g., sparse vectors for diagonal networks, or low-rank matrices for matrix sensing). Establishing
convergence of wλ to such singular points remains an open and challenging problem, which we leave
for future work.

In summary, our results capture the grokking dynamics near nonsingular points in M∗, but do
not yet account for potential convergence toward singular points, which represents an important
open challenge.
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D Additional experiments

D.1 Additional Experimental Details

In all our figures and to align with the continuous-time analysis, training iterations refers to the
rescaled "training time" tk = γk, where k is the number of gradient steps and γ the gradient descent
stepsize. We run gradient descent 107 iterations for Figure 2 and 106 iterations for Figure 3.

D.2 Diagonal linear networks.
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Training time t

Figure 4: Gradient flow with small weight decay λ on a two-layer diagonal linear network. Regression
dataset. (Left): Empirical observation of the grokking behaviour. The training loss rapidly drops
to zero, while the test loss remains flat for an extended period before eventually decreasing. This
transition coincides with a slow but steady decrease in the ℓ2-norm of the weights. (Three plots on
the right): Visualisation of the model predictions throughout training. The dotted light blue curve
represents the teacher function, and the crosses indicate the training data. Snapshots of the model’s
prediction function at various training times (shown in increasing colour intensity) illustrate how
generalisation is affected before and after the transition at t ≈ 1/λ.

Experimental setup (Figure 4). We train a two-layer diagonal linear network of the form fw(x) =
⟨u ⊙ v, φ(x)⟩, where w = (u, v) ∈ R2d and ⊙ denotes element-wise multiplication, on a 1D
toy dataset. The input x ∈ R is mapped to a high-dimensional feature space via the feature map
φ(x) =

[
1, cos

(
πx
2

)
, . . . , cos

(
πdfx

2

)
, sin

(
πx
2

)
, . . . , sin

(
πdfx

2

)]
, with df = 30. The teacher

function is a sparse Fourier series f(x) = 1 + cos
(
6πx
2

)
+ sin

(
21πx
2

)
and is shown as a dotted light

blue curve in Figure 4. The training dataset consists of n = 12 input-output pairs (xi, yi), where
xi are sampled uniformly in [−1, 1] and yi = f(xi). These training points are shown as crosses in
Figure 4. We optimise the squared loss F (w) = 1

2n

∑n
i=1 (yi − fw(xi))

2 using gradient descent
with weight decay λ = 10−4. Finally, the initial weights are sampled from a centered Gaussian of
variance 0.1.

Explaining the observed grokking phenomenon. At time t1 = 0, the weights are randomly initialised
and the training loss is high. By t2 = 102, the training loss has dropped to nearly zero, and the iterates
closely approximate the solution that would be obtained by unregularised gradient flow. This solution
is fully characterised by the implicit regularisation result of [Woodworth et al., 2020], and it does not
have a low norm.4 Subsequently, around time t = 1/λ, the weight norms begin to decrease, and by
t3 ≈ 105, they converge to the minimum-norm solution (u⋆, v⋆) = argminF (u,v)=0 ∥u∥22 + ∥v∥22.
A straightforward calculation shows that the elementwise product β⋆ := u⋆ ⊙ v⋆ solves the problem
argmin⟨β,xi⟩=yi∀i ∥β∥1. This is an ℓ1-minimisation problem, which (under RIP conditions) is
known to recover the sparsest solution [Candes, 2008], explaining the zero test loss after the grokking
phenomenon.

4One could also reach the solution observed at time t3 = 105 without using weight decay by employing a
much smaller initialisation scale Woodworth et al. [2020], but at the cost of longer training time.
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