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Abstract

In this work, we investigate the effect of mo-
mentum on the optimisation trajectory of
gradient descent. We leverage a continuous-
time approach in the analysis of momentum
gradient descent with step size γ and mo-
mentum parameter β that allows us to iden-
tify an intrinsic quantity λ = γ

(1−β)2 which

uniquely defines the optimisation path and
provides a simple acceleration rule. When
training a 2-layer diagonal linear network in
an overparametrised regression setting, we
characterise the recovered solution through
an implicit regularisation problem. We then
prove that small values of λ help to recover
sparse solutions. Finally, we give similar but
weaker results for stochastic momentum gra-
dient descent. We provide numerical experi-
ments which support our claims.

1 Introduction

Momentum methods (Sutskever et al., 2013) have now
become a staple of optimal neural network training due
to the provided gains in both optimisation efficiency
and generalisation performance. This pivotal role is
underscored by the widespread use of momentum in
the successful training of most state-of-the-art deep
networks, including CLIP (Radford et al., 2021), Chin-
chilla (Hoffmann et al., 2022), GPT-3 (Brown et al.,
2020), and PaLM (Chowdhery et al., 2022).

Originating in the work of Polyak (1964), momentum
first featured in the heavy-ball method devised to ac-
celerate convergence in convex optimisation. However,
when applied to neural network training, momentum
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exhibits a distinct and complementary characteristic:
a steering towards models with superior generalisation
performance compared to networks trained with gradi-
ent descent. We note that while the effect of momentum
on optimisation has been researched extensively (De-
fazio, 2020; Sun et al., 2019), the generalisation aspect
of momentum has been left relatively underexplored.

The performance of gradient descent methods presents
intriguing challenges from a theoretical perspective.
First, establishing convergence is highly non-trivial.
Second, the existence of numerous global minima for
the training objective, some of which generalise poorly,
adds to the puzzle (Zhang et al., 2017). To elucidate
this second point, the notion of implicit regularisa-
tion has come to the forefront. It posits that the
optimisation process implicitly favors solutions with
strong generalisation properties, even in the absence
of explicit regularisation. The canonical example is
overparametrised linear regression with more trainable
parameters than the number of samples. While there
exist infinitely many solutions that fit the data, gradient
methods navigate in a restricted parameter subspace
and converge towards the solution closest in terms of
the ℓ2 distance (Lemaire, 1996).

In this work, we aim to expand our understanding of
the implicit bias of momentum by analysing its impact
on the optimisation trajectory in 2-layer diagonal linear
networks. The 2-layer diagonal linear network has gar-
nered significant attention recently (Woodworth et al.,
2020; Vaškevičius et al., 2019; HaoChen et al., 2021;
Pesme et al., 2021; Pillaud-Vivien et al., 2022). Despite
its apparent simplicity, this network has surprisingly
shed light on training behaviours typically associated
with much more complex architectures. Some of these
insights include the influence of initialisation (Wood-
worth et al., 2020), the impact of noise (Pesme et al.,
2021), and the role of the step size (Even et al., 2023).
Consequently, this architecture serves as an excellent
surrogate model for gaining a deeper understanding of
intricate phenomena such as the role of momentum in
the generalisation performance.
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1.1 Main Contributions

In this paper, we investigate the influence of mo-
mentum on the optimisation trajectory of neural net-
works trained with momentum gradient descent (MGD).
Leveraging the continuous-time approximation of MGD
– momentum gradient flow (MGF), we show that the
optimisation trajectory strongly depends on the key
quantity λ = γ

(1−β)2 , where γ and β denote the step

size and momentum parameter of MGD, respectively.
Surprisingly, this continuous-time framework experi-
mentally proves to be a good approximation of the
discrete trajectory even for large values of γ.

We proceed to list our main contributions.

• First, using the key quantity λ, we derive a
straightforward acceleration rule that maintains
the optimisation path while accelerating the op-
timisation speed.

• Then, focusing on MGF on 2-layer diagonal linear
networks, we precisely characterise the recovered
solution and prove that for suitably small values
of λ, MGF recovers solutions which generalise
better than the ones selected by gradient flow
(GF) in a sparse regression setting.

• Finally, we provide similar but slightly weaker
results for stochastic MGD.

1.2 Related Works

Momentum and Acceleration. Momentum algo-
rithms have their roots in acceleration methods, and
many studies have investigated their convergence speed
when optimising both convex and non-convex func-
tions: (Ghadimi et al., 2015; Flammarion and Bach,
2015; Kidambi et al., 2018; Can et al., 2019; Sebbouh
et al., 2021; Mai and Johansson, 2020; Liu et al., 2020;
Cutkosky and Mehta, 2020; Defazio, 2020; Orvieto
et al., 2020; Sebbouh et al., 2021). Moreover, apart
from accelerating training, heavy-ball methods come
with the additional advantage of always escaping saddle
points (Jin et al., 2018; Sun et al., 2019).

Momentum and Continuous-Time Models.
Building upon the foundational work of Alvarez (2000);
Attouch et al. (2000), researchers have analysed accel-
erated gradient methods using second-order differential
equations. Su et al. (2014) extended the previous ODE
to encompass the Nesterov accelerated method, demon-
strating convergence rates similar to the discrete case.
Wibisono et al. (2016) adopted a variational perspec-
tive to scrutinise the mechanics of acceleration. A
significant advancement emerged with the introduc-
tion of Lyapunov analysis, undertaken by Wilson et al.
(2021); Sanz Serna and Zygalakis (2021); Moucer et al.

(2023). This analytical approach sheds light on the
stability and convergence properties of these methods.
Further refinement has been achieved by Shi et al.
(2021), who developed high-resolution ODEs tailored
to various momentum-based acceleration techniques
and able to distinguish between Nesterov’s Accelerated
Gradient and Polyak’s Heavy Ball methods. Finally,
error bounds for the discretisation of MGF have been
developed by Kovachki and Stuart (2021).

Momentum and Implicit Bias. Sutskever et al.
(2013); Leclerc and Madry (2020) have empirically
shown significant generalisation improvements in ar-
chitectures trained with momentum on common vision
tasks. Building on these empirical observations, Jelassi
and Li (2022) designed a synthetic binary classification
problem where a 2-layer convolutional neural network
trained with MGD provably generalises better than
gradient descent (GD). Recently, Ghosh et al. (2023)
reveal that the MGD trajectory closely resembles the
gradient flow trajectory of a regularised loss. Through
the specific regularisation, the authors argue that the
MGD trajectory favors flatter minima than the GD tra-
jectory. The study’s findings apply to any reasonable
loss, but due to the finite time horizon restriction, can-
not characterise the solution to which MGD converges.
Additionally, Wang et al. (2023) show that in deep
diagonal linear networks with identical weights across
layers, increasing the depth biases the optimisation
towards sparse solutions.

2 From Discrete to Continuous

Momentum Gradient Descent. We consider min-
imising a differentiable function F : Rd → R using mo-
mentum gradient descent (MGD) with step size γ > 0
and momentum parameter β ∈ [0, 1). Initialised at two
points (w0, w1) ∈ R2d, the iterates follow the discrete
recursion for k ≥ 1:

wk+1 = wk − γ∇F (wk) + β(wk − wk−1). (MGD(γ, β))

Momentum Gradient Flow. Directly analysing the
discrete recursion MGD(γ, β) appears intractable in
many settings. To overcome this difficulty, we follow
the classical approach of considering a second order
differential equation of the form

aẅt + bẇt +∇F (wt) = 0 (1)

with leading coefficient a ≥ 0 and damping coefficient
b > 0. In fact, without loss of generality, the previous
differential equation can be reduced to a new one which
depends on a single parameter λ. Indeed, assume that
wt follows ODE (1) with initialisation (wt=0, ẇt=0) =
(w0, ẇ0), then a simple chain rule shows that w̃t = wbt
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follows

a

b2
¨̃wt + ˙̃wt +∇F (w̃t) = 0,

with initialisation (w̃t=0, ˙̃wt=0) = (w0, bẇ0). Hence, up
to a time reparametrisation, it is sufficient to consider
the following differential equation which depends on a
unique parameter λ ≥ 0:

λẅt + ẇt +∇F (wt) = 0. (MGF(λ))

We call the differential equation MGF(λ) momentum
gradient flow (MGF) with parameter λ. To show
the link with the MGD(γ, β) recursion, we discretise
MGF(λ) with a second-order central difference, first-
order backward difference, and discretisation step ε > 0
as carried out by Kovachki and Stuart (2021):

λ wk+1−2wk+wk−1

ε2 + wk−wk−1

ε +∇F (wk) = 0. (2)

Rewriting, we obtain

wk+1 = wk −
ε2

λ
∇F (wk) + (1− ε

λ
)(wk − wk−1),

which corresponds to momentum gradient descent with

parameters γ = ε2

λ and β = 1− ε
λ . Solving for ε and λ

leads to the following proposition:

Proposition 1. For (w0, w1) ∈ R2d, consider momen-
tum gradient flow MGF(λ) with

λ =
γ

(1− β)2

and initialisation wt=0 = w0, ẇt=0 = (w1 − w0)/
√
λγ.

Then, discretising as (2) with discretisation step ε =√
λγ = γ/(1− β) leads to the momentum gradient de-

scent recursion MGD(γ, β) with step size γ, momentum
parameter β, and initialisation (w0, w1).

Proposition 1 motivates studying MGF(λ) as a contin-
uous proxy for MGD(γ, β) assuming that the discreti-
sation (2) closely approximates the continuous path.

Discretisation Error Bounds. Unfortunately, ap-
plying known discretisation error bounds to our setting
leads to very pessimistic bounds. Indeed, for step size γ
and momentum parameter β, consider the iterates wk
from MGD(γ, β) initialised at (w0, w1). Now, let w(t)
be the solution of MGF(λ) with λ = γ/(1 − β)2 and
the appropriate initialisation from Proposition 1. Then,
for a finite horizon K > 0, classical discretisation error
bounds (see Kovachki and Stuart (2021), Theorem 4)
lead to a catastrophic

sup
k≤K

∥wk − w(kε)∥ ≤ exp(CK)ε,

where the constant C depends on λ and F . Such an
exponential dependence in the time horizon K ques-
tions the suitability of momentum gradient flow as a
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Figure 1: (M)GD over a 2D quadratic. Left and Middle:
The (M)GD trajectories closely follow the continuous
trajectories of (M)GF as suggested by Proposition 1.
Right : MGD(4γ, β2) follows the same trajectory as
MGD(γ, β) but twice as fast as suggested by Corol-
lary 1. In contrast, GD(4γ) runs four times faster
than GD(γ).

good proxy for momentum gradient descent. However,
empirically, the above bound appears excessively pes-
simistic (see Figure 1: Left and Middle). The MGF and
MGD trajectories behave similarly in various settings,
even with non-convex losses F and relatively large step
sizes γ (see Appendix F for additional experiments).

Intertwined Roles of γ and β. When the discreti-
sation accurately follows the continuous path, Propo-
sition 1 implies that the trajectory of MGD(γ, β) is
solely determined by a single parameter λ = γ/(1−β)2,
intertwining step size and momentum as observed in
Figures 1 and 2. Consequently, γ and β serve in-
terchangeable roles in influencing the trajectory
of MGD(γ, β). Note that this single-parameter depen-
dence aligns with empirical results from Leclerc and
Madry (2020) where generalisation performance with
large step sizes can be replicated with momentum and
smaller step sizes. Though the quantity γ/(1 − β)2

spontaneously appears in works studying MGD (Ghosh
et al., 2023), to the best of our knowledge, its natural
presence was never clearly explained and motivated.

MGD Acceleration Rule. Though all couples (γ, β)
with the same same value of λ yield the same trajectory,
the iterates do not follow this path at the same speed.

Corollary 1 (Acceleration rule). Let MGD(γ, β) ini-
tialised at w0 = w1 ∈ Rd correspond to the discretisa-
tion of MGF(λ) with discretisation step ε. Now, for
ρ ∈ R>0, consider the different parameter couple

γ̂ = ρ2γ and β̂ = 1− ρ(1− β) ≈β→1 β
ρ.1

Then, since γ̂/(1 − β̂)2 = λ, MGD(γ̂, β̂) initialised
at w0 = w1 becomes the discretisation of the same
MGF(λ) but with discretisation step ε̂ = ρ · ε.

Following the notations of the previous corollary for an
integer ρ ≥ 2 and letting wk and ŵk denote the iterates

1The approximation symbol abbreviates the Taylor-
expansion bound 1− ρ(1− β) = βρ +O((1− β)2).
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Figure 2: Teacher-student framework with a fully-
connected 1-hidden layer ReLU network. The level
lines of the test loss after training with MGD(γ, β)
correspond to values of γ, β which have a fixed value
λ = γ/(1− β)2, as predicted by Proposition 1.

of MGD(γ, β) and MGD(γ̂, β̂), respectively, Corollary 1
implies that we expect wρ·k and ŵk to be close. This
is in contrast with gradient descent, where scaling the
step size by a factor ρ2 leads to a speedup of ρ2. This
acceleration rule is illustrated in Figure 1 with ρ = 2.

Optimisation Regimes. The link between λ, γ, and
β highlights several regimes:

• β large – the iterates converge arbitrarily slow.
Taking β close to 1 while keeping γ constant leads to
λ≫ 1. As explained previously, a chain rule shows
that w̃t = w√

λt follows the ODE ¨̃wt + λ−1/2 · ˙̃wt +
∇F (w̃t) = 0. Consequently, the damping parameter
λ−1/2 goes to 0, and we expect the iterates to heavily
oscillate and converge arbitrarily slowly.

• γ small – the iterates follow GF. Taking γ →
0 while keeping β fixed leads to λ ≪ 1, and
MGF(λ) boils down to gradient flow. We expect
the MGD(γ, β) iterates to be close to the discreti-
sation of GF with discretisation step ε = γ/(1− β).
That is, MGD(γ, β) will approximate GD with step
size γ/(1 − β). Hence, MGD gains a speed-up of
1/(1− β) over GD without a change of trajectory.

• The “momentum” regime. In this regime, γ and
β are such that λ is non-degenerate, and gradient
flow cannot capture the trajectory of MGD(γ, β).
Hence, β has an impact on the optimisation path,
and the iterates can still converge in reasonable time.

3 Momentum Gradient Flow over
Diagonal Linear Networks

Overparametrised Linear Regression. We con-
sider a linear regression over n samples (xi, yi)

n
i=1 with

inputs xi living in Rd and scalar outputs yi ∈ R. We
assume the dimension d to be larger than the number
of samples n, in which case there exists an infinite
number of vectors θ⋆ which perfectly fit the dataset

with yi = ⟨θ⋆, xi⟩ for all 1 ≤ i ≤ n. We call these vec-
tors interpolators and we denote by S the set of such
vectors: S = {θ⋆ ∈ Rd : yi = ⟨θ⋆, xi⟩, ∀i ∈ [n]}. Note
that S is an affine space of dimension at least (d− n)
equal to θ⋆+span(x1, . . . , xn)

⊥ for any interpolator θ⋆.
We consider the quadratic loss:

L(θ) = 1

2n

n∑
i=1

(yi − ⟨xi, θ⟩)2. (3)

MGF over Least Squares. A classical result found in
Lemaire (1996) and Gunasekar et al. (2018) shows that
when initialised at θ0, gradient flow over the quadratic
loss (3) converges to the orthogonal projection of the
initialisation on S: argminθ⋆∈S ∥θ⋆ − θ0∥2. This next
proposition from Alvarez (2000) shows that momentum
does not fundamentally change the implicit bias.

Proposition 2 (Alvarez (2000)). Initialised at θ0 with
initial speed θ̇0, momentum gradient flow MGF(λ) over
the least squares loss (3) converges towards

argmin
θ⋆∈S

∥θ⋆ − (θ0 + λθ̇0)∥2.

MGF(λ) recovers the same solution as gradient flow
but with an effective initialisation θ0 +λθ̇0 which takes
into account the drift along span(x1, · · · , xn)⊥ due to
the initial speed θ̇0. Note that in practice, θ̇0 is chosen
equal to 0, in which case the presence of momentum
has no effect on the recovered solution.

To better understand momentum’s effect on neural net-
works, we move beyond simple linear parametrization.

2-Layer Diagonal Linear Network. We consider a
toy neural network, which corresponds to reparametris-
ing the regression vector as θ = u ⊙ v for weights
(u, v) ∈ R2d. This parametrisation can be viewed as a
simple neural network x 7→ ⟨u, σ(diag(v)x)⟩, where the
output weights are u, the inner weights are the diagonal
matrix diag(v), and where the activation function σ
is the identity. The loss function over the trainable
weights w = (u, v) ∈ R2d now writes

F (w) = L(u⊙ v) =
1

2n

n∑
i=1

(yi − ⟨xi, u⊙ v⟩)2,

where ⊙ denotes the Hadamard product. Despite the
simplicity of this reparametrisation, the loss function
F is non-convex and challenging to analyse.

Momentum Gradient Flow. We consider momen-
tum gradient flow MGF(λ) with parameter λ ≥ 0 over
the diagonal-linear-network loss F :

λüt + u̇t +∇L(θt)⊙ vt = 0

λv̈t + v̇t +∇L(θt)⊙ ut = 0.
(4)
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We initialise the flow with zero speed u̇0 = v̇0 = 0, and
apart from requiring the quantity |u20−v20 | to have non-
zero coordinates2, we impose no further constraints
on the weight initialisations (u0, v0). In what follows,
we often rely on the reparametrisation (w+,t, w−,t) :=
(ut+vt, ut−vt) which makes our formulas more succinct.
We will also make use of the initialisation scale α, which
we define as α := max(∥u0∥∞, ∥v0∥∞) and consider as
a small quantity.

Balancedness. In our results, the balancedness of the
weights plays a key role. We recall its definition here.

Definition (Balancedness). The balancedness3 of the
weights of the diagonal linear network corresponds
to the quantity ∆t := |u2t − v2t | ∈ Rd≥0. We define
∆∞ := limt→∞ ∆t as the asymptotic balancedness.

Notice that with the above definition we simply adapted
the classical notion of balancedness for general linear
neural networks (see Du et al., 2018; Arora et al., 2019)
to our toy setting. In the case of gradient flow, a simple
derivation shows that balancedness is a conserved quan-
tity: i.e., ∆t = ∆0 for all t ≥ 0. However, the evolution
of ∆t becomes more complicated as soon as λ > 0,
and our findings emphasise that the asymptotic bal-
ancedness ∆∞ plays a crucial role in the generalisation
properties of the recovered solution.

Experimental Details. In our numerical experi-
ments, we explore the effects of momentum in the
noiseless sparse regression setting with uncentered
data as in (Nacson et al., 2022). Specifically, we choose

(xi)
n
i=1

i.i.d.∼ N (µ1, σ2Id) and yi = ⟨xi, θ⋆s⟩ for i ∈ [n],
where θ⋆s is s-sparse with nonzero entries equal to 1/

√
s.

The use of uncentered data is necessary in order to ex-
perimentally observe a clear impact of momentum over
the training trajectory (see Figure 9 for experiments
with centered data). We train a 2-layer diagonal linear
network with (M)GD and (M)GF with a uniform ini-
tialisation u0 = α · 1, v0 = 0, where α = 0.01. For the
plots presented in the main part of our paper, we fixed
(n, d, s) = (20, 30, 5), (µ, σ) = (1, 1). We show results
averaged over 5 replications. We refer the reader to
Appendix F for additional experiments where we vary
the parameters of the data distribution (e.g., centered
data), change the architecture of the trained model,
and give further details on the implementation of the
(M)GF simulation.

Notations. We let X = (x1, . . . , xn)
⊤ ∈ Rn×d de-

note the feature matrix and y = (y1, . . . , yn) ∈ Rn

2If initially ui,0 = ±vi,0 for some coordinate i ∈ [d],
then ui,t = ±vi,t, ∀t ≥ 0. Hence, imposing |u2

0 − v20 | ̸= 0
becomes equivalent to working with 2d distinct weights.
See Appendix C.3.2 for the full argument from uniqueness.

3The absolute value in the definition must be understood
coordinate-wise.

– the output vector. For a vector z ∈ Rd and a
scalar function f : R → R, the action of f on z
must be understood element-wise: f(z) ∈ Rd rep-
resents the vector (f(zk))

d
k=1. Inequalities between

vectors will also be interpreted as holding coordinate-
wise. Additionally, when we write q± for some place-
holder quantity q, we mean that we refer to both
q+ and q−. For example: w±,t = (ut ± vt). Fi-
nally, for a strictly convex function Φ : Rd → R,
which we call a potential, the Bregman divergence
is defined as the nonnegative quantity DΦ(θ1, θ2) =
Φ(θ1)− Φ(θ2)− ⟨∇Φ(θ2), θ1 − θ2⟩, ∀θ1, θ2 ∈ Rd.

3.1 Implicit Bias of Gradient Flow

Before analysing the effect of momentum, we start by
recalling the known results for gradient flow on diago-
nal linear networks, which corresponds to taking λ = 0
in eq. (4). Woodworth et al. (2020) show that the
predictors θt = ut ⊙ vt converge towards an interpola-
tor θGF uniquely defined by the following constrained
minimisation problem:

θGF = argmin
θ⋆∈S

Dψ∆0
(θ⋆, θ0), (5)

where for ∆ ∈ Rd>0, ψ∆ : Rd → R denotes the hyper-
bolic entropy function (Ghai et al., 2020) at scale ∆:

ψ∆(θ) =
1
4

∑d
i=1

(
2θi arcsinh

(
2θi
∆i

)
−
√

4θ2i +∆2
i +∆i

)
, (6)

andDψ∆
is the Bregman divergence. Note that through

eq. (5), θGF corresponds to the Bregman-projection of
the initialisation on the set of interpolators.

Effect of the Initialisation Scale. For a small initial-
isation scale α, θ0 = O(α2) becomes much smaller than
any interpolator θ⋆ ∈ S. Hence, Dψ∆0

(θ⋆, θ0) roughly
equals Dψ∆0

(θ⋆, 0), and eq. (5) should be thought of as

θGF ≈ argmin
θ⋆∈S

ψ∆0
(θ⋆). (7)

This last equation highlights the fact that the recovered
solution simply depends on the initial balancedness ∆0,
making it a key quantity. Importantly, the hyperbolic
entropy is a convex function which interpolates between
the ℓ1 and ℓ2 norms as the magnitude of ∆0 goes from
0 to +∞ (see Woodworth et al. (2020), Theorem 2).
So, as ∆0 = O(α2) goes to 0, ψ∆0 becomes asymptoti-
cally identical to the ℓ1-norm (see Appendix E). Hence,
as seen through eq. (7), a small initialisation scale α
leads to the recovery of a solution with a small ℓ1-norm,
which facilitates sparse recovery and explains why this
setting is referred to as the “rich” or “feature-learning”
regime. On the other hand, larger initialisation scales
lead to the so-called “kernel” or “lazy” regime, where
gradient flow selects small-ℓ2-norm solutions. Overall,
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the smaller the initialisation scale, the closer
the retrieved solution will be to the minimum-
ℓ1-norm solution. We refer the reader to the work of
Wind et al. (2023) for precise recovery bounds. How-
ever, as noted in Even et al. (2023), the picture remains
incomplete if we do not take into account the homo-
geneity of ∆0. Indeed, initialisations with entries of
different magnitudes can hinder the recovery of a sparse
vector. However, in our case, our experiments (for un-
centered data) verify that the overall magnitudes of ∆0

and ∆∞ are sufficient to explain the effects of momen-
tum. We therefore put aside potential homogeneity
considerations.

3.2 Implicit Bias of Momentum Gradient Flow

We now move on to describe the impact of momen-
tum on the solution recovered by MGF(λ). Our work
proceeds under the following assumption.

Assumption 1 (Boundedness). The optimisation tra-
jectory (ut, vt)t≥0 of MGF (4) is bounded.

Unfortunately, even though Assumption 1 holds true
in all our experiments, the boundedness of the tra-
jectory of a second-order gradient flow has only been
established under stronger assumption on the loss func-
tion (Alvarez, 2000; Goudou and Munier, 2009; Api-
dopoulos et al., 2022). We defer further details to Ap-
pendix C.1. Crucially, the boundedness assumption
allows us to prove the convergence of the iterates, and
we let (u∞, v∞) := limt→∞(ut, vt). Our goal now be-
comes to characterise the recovered predictor which we
denote with θMGF := u∞ ⊙ v∞. For our proofs, we make
the following additional assumption.

Assumption 2 (Balancedness). The asymptotic bal-
ancedness ∆∞ has non-zero coordinates: ∆∞,i > 0 for
all i ∈ [d].

Again, Assumption 2 holds true empirically in all our
experiments, and in Proposition 3, we prove that small
values of λ lead to nonzero asymptotic balancedness.
Positing Assumption 2 allows us to prove that the
recovered solution θMGF interpolates the dataset.

3.2.1 General Characterisation of MGF Bias

In our main result for MGF, we prove that the iter-
ates converge towards an interpolator characterised as
the solution of a constrained minimisation problem
which involves the hyperbolic entropy (6) scaled at the
asymptotic balancedness ∆∞. Moreover, we derive
an insightful description of the asymptotic balanced-
ness in terms of the full optimisation trajectory which
allows us to compare the generalisation properties of
MGF and GF for small values of λ. Before stating our

main continuous-time theorem, we define two integral
quantities which appear in our results.

Lemma 1. The following integral quantities Ω+ and
Ω− are well-defined and finite:

Ω± :=

∫ ∞

0

m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt

where sgn(·) denotes the sign function, w±,t = ut ± vt,
and m.p.v. denotes a modified Cauchy principal value
defined in Appendix A.

The fact that the weights w±,t can cross zero necessi-
tates the use of the modified Cauchy principal value
since otherwise the integrals would diverge. Now, for
succinctness, let us introduce the integral quantities

I± := Ω± + Λ±,

where the terms Λ± vanish whenever the balancedness
∆t remains strictly positive for all t ∈ [0,∞]. The
precise form of Λ± is uninformative and can be found
in Equation (19), Appendix C.3.2. We now proceed to
characterise the recovered solution θMGF.

Theorem 1. The solution θMGF of MGF (4) interpo-
lates the dataset and satisfies the following implicit
regularisation:

θMGF = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman

divergence with potential ψ∆∞ , where the asymptotic
balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)
and θ̃0 = 1

4 (w
2
+,0 ⊙ exp (−2I+) − w2

−,0 ⊙ exp (−2I−))
denotes a perturbed initialisation term.

The proof of Theorem 1 appears in Appendix C.3 as
well as explicit formulas for ∆∞ and θ̃0. We explain
the significance and shed more light on the different
parts of Theorem 1 below.

Perturbed Initialisation θ̃0. In all our experiments,
we observe that the perturbed initialisation θ̃0 remains
negligible in the sense that for any interpolator θ⋆ ∈ S,
∥θ̃0∥2 ≪ ∥θ⋆∥2. Moreover, in the next section, we prove
that whenever the balancedness remains nonzero during
training, θ̃0 becomes smaller than α2, where α stands
for the initialisation scale. Hence, exactly for the same
reasons as for gradient flow, the implicit regularisation
problem from Theorem 1 should be though of as

θMGF ≈ argmin
θ⋆∈S

ψ∆∞(θ⋆). (8)

Appendix C.3.3 provides more details. Thus, the
asymptotic balancedness ∆∞ becomes the key quantity
governing the properties of the recovered solution.



Hristo Papazov∗, Scott Pesme∗, Nicolas Flammarion

Gradient Flow 
(λ = 0)
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Figure 3: Test loss (in blue) and magnitude of balanced-
ness (in red) at convergence of MGF(λ) over a diagonal
linear network in a sparse regression setting with un-
centered data. As predicted by Theorem 1, a more
balanced solution generalises better. The shaded zone
corresponds to values of λ for which the balancedness
never hits zero during training and for which Corol-
lary 2 therefore holds.

Key Role of ∆∞. If during optimisation the weights
become more balanced, i.e. ∆∞ < ∆0, then as dis-
cussed previously, based on the properties of ψ∆∞ ,
the recovered solution will enjoy better sparsity guar-
antees than the solution of gradient flow. Figure 3
illustrates this point: the smaller the magnitude of
∆∞, the better the generalisation. Finally note that
by eqs. (5) and (8), θMGF approximately equals the
solution recovered from gradient flow initialised at
u0 =

√
∆∞, v0 = 0, which we denote by θGF∆∞

. We
observe ||θMGF − θGF∆∞

||2/||θGF∆∞
||2 < 0.01 in all our ex-

periments, which validates the approximation in eq. (8).

Path-Dependent Quantity. Unfortunately, the
asymptotic balancedness depends on the whole op-
timisation trajectory in a very intricate way, and we
cannot compare ∥∆∞∥ and ∥∆0∥. Thus, in general,
we cannot meaningfully compare the recovered interpo-
lators θMGF and θGF. However, in the following section
we prove that with the additional assumption that the
balancedness remains nonzero, we have ∆∞ < ∆0.

3.3 Provable Benefits of Momentum for Small
Values of λ

In this subsection, we prove that for small values of
the momentum flow parameter λ, the recovered solu-
tion becomes more balanced (and therefore sparser)
than the solution of gradient flow. As a starting
point for our argument, notice that if the balanced-
ness ∆t = |u2t − v2t | = |w+,tw−,t| remains strictly posi-
tive throughout training, then the weights w±,t never
change sign. Hence, the integral quantities Λ± become
0, and Ω± > 0. Thus, I± > 0, which combined with

Theorem 1 implies the following corollary.

Corollary 2. For λ > 0, if the balancedness ∆t re-
mains strictly positive during training (i.e. ∆t ̸= 0 for
t ∈ [0,+∞]), then the perturbed initialisation satisfies
|θ̃0| < α2 and

∆∞ = ∆0 ⊙ exp
(
− λ

∫ ∞

0

( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2
dt
)
.

Importantly, ∆∞ < ∆0.

In words, the above corollary (proved in Appendix C.4)
implies that if the balancedness ∆t does not hit zero
during training, then (i) the perturbation term θ̃0 is
provably negligible, (ii) the asymptotic balancedness is
coordinate-wise smaller than initial balancedness ∆0

which translates into a solution with better sparsity
properties than the gradient flow interpolator. This
regime corresponds to the gray zone in Figure 3. The
following proposition proved in Appendix E demon-
strates that for small values of λ, the balancedness
remains strictly positive.

Proposition 3. For λ ≤ n
∥y∥2

2
· (mini≤d∆0,i), the bal-

ancedness ∆t never vanishes: ∆t ̸= 0, ∀t ∈ [0,+∞].

Hence, through Proposition 3 and Corollary 2, we show
that small values of λ lead to solutions with better
sparse recovery guarantees.

Limitations of Our Analysis. In Appendix C.3.2,
we prove that ∆t can vanish at most a finite number
of times. Experimentally, ∆t never hits 0 for much
larger values of λ than n

∥y∥2
2
· (mini≤d∆0,i), making the

bound from Proposition 3 relatively loose. In Figure 3,
we empirically observe an interval (0, λmax) in which
MGF(λ) outperforms GF in terms of generalisation.
Moreover, there exists an optimal value λ⋆ (roughly
corresponding to the smallest ∆∞) which brings about
the most improvement compared to gradient flow. Un-
fortunately, as observed Figure 3, the balancedness
vanishes for λ = λ⋆, and therefore Corollary 2 does not
cover the optimal value. Also note that (0, λmax) and
λ⋆ depend on the data.

Behaviour of ∆∞ for Small Values of λ. Unfor-
tunately, determining the precise effect of λ on ∆∞ is
challenging. Nonetheless, for small λ, we informally
show in Appendix C.5 that

∆2
∞ ≈

λ→0
∆2

0 ⊙ exp
(
− 2λ

∫ ∞

0

∇L(θs)2ds
)
.

This approximate equivalence for small λ echoes the
implicit bias of SGD (Even et al., 2023; Pesme et al.,
2021), which involves a similar formulation for the effec-
tive initialisation where the step size γ appears instead
of λ. Note that the above approximation suggests that
for small values of λ, ∆∞ monotonically decreases with
λ as experimentally confirmed by Figure 3.



Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks

3.4 Sketch of Proof

Implicit Bias through a Second-Order Time-
Varying Mirror Flow. A natural way of show-
ing the implicit regularisation (5) of gradient flow
on a 2-layer diagonal linear network goes through
proving that the predictors θGFt follow the mirror flow
d∇ψ∆0

(θGFt ) = −∇L(θGFt )dt. In our setting, we prove
that the predictors θMGFt follow a second-order time-
varying mirror flow. Specifically, we define a family
of potentials (Φt)t≥0 with Φt(θ) := ψ∆t(θ) − ⟨ϕt, θ⟩
where ψ∆t corresponds to the hyperbolic entropy (6)
depending on the balancedness ∆t and a perturbation
function ϕt. We then prove the following proposition.

Proposition 4. The predictors θMGFt follow a momen-
tum mirror flow with time-varying potentials Φt:

λ
d2∇Φt(θ

MGF
t )

dt2
+

d∇Φt(θ
MGF
t )

dt
+∇L(θMGFt ) = 0.

The implicit regularisation follows from integrat-
ing the ODE: ∇Φ∞(θMGF) = −

∫∞
0

∇L(θMGFt )dt ∈
span(x1, . . . , xn) which exactly corresponds to the
KKT conditions of the constrained minimisation from
Theorem 1. Assuming that w±,t do not change sign, the
proof of Proposition 4 comes naturally and relies on the
writing w±,t = sgn(w±,0) exp(ρ±,t). When the iterates
cross 0, this reparametrisation does not hold anymore.
The analysis can still be carried out by decomposing
R≥0 into intervals on which the iterates have constant
sign and appropriately sticking the intervals using a
modified Cauchy principal value.

4 Momentum SGD over Diagonal
Linear Networks

In this section, we move from continuous to discrete
time and focus on the original MGD(γ, β) recursion
for which we can prove similar but slightly weaker
results than the ones for MGF. In fact, our results hold
for stochastic momentum gradient descent (SMGD)
with any batch size B ∈ [n]. For step size γ > 0 and
momentum parameter β ∈ [0, 1), the SMGD recursion
writes as follows:

uk+1 = uk − γ∇LBk
(θk)⊙ vk + β(uk − uk−1)

vk+1 = vk − γ∇LBk
(θk)⊙ uk + β(vk − vk−1),

(9)

where LBk
(θ) := 1

2B

∑
i∈Bk

(yi − ⟨u ⊙ v, xi⟩)2 corre-
sponds to the partial loss over the batch Bk ⊂ [n] of size
B. The batches could be sampled with or without re-
placement. As for continuous time, we let θk = uk⊙ vk
correspond to the regression predictor. We initialise at
u1 = u0 and v1 = v0, and we again consider the bal-
ancedness of the weights ∆k := |u2k − v2k| for k ≥ 0, the

reparametrised iterates w±,k := uk ± vk, and the ini-
tialisation scale α := max(∥u0∥∞, ∥v0∥∞). In contrast
to our continuous-time prerequisites where we only
assumed boundedness of the optimisation trajectory,
here we assume that the iterates converge:

Assumption 3 (Convergence). The iterates (uk, vk)
converge towards the limiting weights (u∞, v∞). We
denote by θSMGD := u∞ ⊙ v∞ the recovered predictor.

As in continuous time, we again assume that the asymp-
totic balancedness is nonzero.

Assumption 4 (Balancedness). The asymptotic bal-
ancedness ∆∞ := |u2∞ − v2∞| has non-zero coordinates.

Similar to Lemma 1, we define two discrete infinite
sums which depend on the entire trajectory and appear
in our discrete-time result.

Lemma 2. The following two sums S+ and S− con-
verge to finite vectors:

S± =
1

1− β

∞∑
k=1

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
,

where r(z) = (z − 1)− ln(|z|) for z ̸= 0.

Importantly, the function r(z) from Lemma 2 is positive
for z > 0. Contrary to the continuous-time case, in
discrete time, the iterates w±,k never exactly equal
zero. Indeed, since ∇L is linear, we have that for all
k ≥ 0, w±,k(γ, β) is a polynomial in (γ, β). Therefore,
the set of pairs (γ, β) for which there exists k ≥ 0
such that w±,k(γ, β) = 0 is a negligible set in R2. The
iterates therefore ‘jump’ over zero, making the sums
from Lemma 2 well-defined.

4.1 General Characterisation of SMGD Bias

The following theorem represents the discrete counter-
part of Theorem 1 and generalises (Even et al., 2023,
Theorem 1) which considers SGD without momentum.

Theorem 2. The solution θSMGD of SMGD (9) inter-
polates the dataset and satisfies the following implicit
regularisation:

θSMGD = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman

divergence with potential ψ∆∞ , where the asymptotic
balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (S+ + S−)

)
and θ̃0 = 1

4 (w
2
+,0 ⊙ exp(−2S+))− w2

−,0 ⊙ exp(−2S−))
denotes a perturbed initialisation term.
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Figure 4: (Non-stochastic) MGD over a diagonal linear network in a sparse regression setting with uncentered
data. As predicted by Proposition 1, the three quantities at convergence only depend on the single parameter
λ := γ/(1− β)2. As predicted by Theorem 2, a more balanced solution (center plot) leads to a solution with a
smaller ℓ1-norm (right plot), which in turn translates into better generalisation (left plot). Finally, as predicted by
Corollary 3, the trajectories for which the iterates do not cross zero satisfy ∆∞ < ∆0, where ∆0 (approximately)
corresponds to the asymptotic balancedness for β = 0 and γ = 10−3.

Due to the strong similarities with Theorem 1, we pro-
ceed by making similar comments. In our experiments,
the norm of the perturbed initialisation θ̃0 remains
much smaller than that of any interpolator θ⋆. Hence,
arguing as before, the implicit regularisation problem
from Theorem 2 should be though of as

θSMGD ≈ argmin
θ⋆∈S

ψ∆∞(θ⋆). (10)

Again, the asymptotic balancedness ∆∞ controls the
generalisation properties of the recovered solution.
Thus, if ∥∆∞(γ, β)∥2 < ∥∆∞(γ′, β′)∥2, we expect the
interpolator θSMGD(γ, β) to be sparser than θSMGD(γ′, β′).
Figure 4 illustrates this point: the smaller the mag-
nitude of ∆∞ (center plot), the better the sparsity
of the interpolator (right plot), which translates into
better generalisation (left plot). Unfortunately, as for
MGF, the asymptotic balancedness ∆∞ depends on
the whole optimisation trajectory in an intricate way,
which prevents us from extracting an insightful for-
mula for ∆∞ in terms of γ and β. However, Figure 4
indicates that ∆∞ effectively depends on the single pa-
rameter λ = γ/(1−β)2. As in Figure 2, λ again clearly
appears to be the relevant quantity which governs the
performance of MGD, and not γ and β considered indi-
vidually. These empirical observations support the idea
that even for ‘practical’ step sizes γ and momentum
parameters β, MGD(γ, β) closely follows MGF(λ).

Figure 4 also clearly shows that the asymptotic bal-
ancedness decreases as the key quantity λ increases
over an interval [0, λ⋆] where λ⋆ denotes the parameter
inducing the best generalisation performances. Then,
for λ above λ⋆, the magnitude of ∆∞ starts to grow
and the sparsity of the solutions deteriorates. We ex-
pect proving this phenomenon to be very challenging.
Such a proof would require a fine-grained analysis of

the sums S±, which becomes already quite involved
when β = 0 as performed by Even et al. (2023).

Now, similar to the continuous-time result, the follow-
ing corollary shows that if the iterates do not change
sign, then the asymptotic balancedness becomes smaller
than the initial balancedness.

Corollary 3. For γ, β > 0, if the iterates w±,k =
(uk ± vk) do not change sign during training, then
|θ̃0| < α2 and ∆∞ < ∆0.

The above corollary implies that the recovered solution
θSMGD must perform at least as well as the gradient flow
interpolator θGF. However, in contrast to the continuous
case and even though we believe it to be true, we were
unable to prove that the SMGD iterates do not change
sign for small values of λ.

5 Conclusion

Considering an appropriate second-order differential
equation which discretises into MGD, we highlight
the existence of a single key quantity λ = γ/(1− β)2

which fully determines the trajectory of MGF. This
continuous-time perspective also provides a simple ac-
celeration rule and insight into several relevant opti-
misation regimes. Then, focusing on 2-layer diagonal
linear networks, we prove that the asymptotic balanced-
ness ∆∞ solely governs the generalisation performances
of MGF and SMGD. We additionally prove that small
values of λ aid the recovery of sparse MGF solutions.
Future work should consider MGF/MGD optimisation
on more complex architectures and understand pre-
cisely the non-trivial effect of λ on the asymptotic
balancedness ∆∞.
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Organisation of the Appendix.

The appendix is organised as follows:

• In Appendix A, we introduce additional notation and provide further comments on the discretisation
methods.

• In Appendix B, we present a useful reparametrisation of our problem.

• In Appendix C, we offer proofs for our continuous-time results, specifically Theorem 1, Corollary 2, and
Proposition 4.

• In Appendix D, we detail the proofs for our discrete-time results, namely Lemma 2, Theorem 2 and
Corollary 3.

• In Appendix E, we introduce technical lemmas necessary for our main results and prove Proposition 3.

• In Appendix F, we provide more details on the main-paper experiments and showcase further experimental
results.

A Additional Notations and Comments on Discretisation Methods

Vector Operations. Moving forward, all arithmetic operations and real-valued functions will be considered as
being applied coordinate-wise. In other words, if a and b are vectors in Rd and p, q ∈ Q, then apbq ∈ Rd will be
used as a shorthand for the vector with entries {api bqi }di=1. And for any f : R → R, f(a) will represent the vector
with entries {f(ai)}di=1. Inequalities between vectors will also be interpreted as holding coordinate-wise.

Mirror Maps. Various definitions of a mirror map Φ : Rd → (−∞,+∞] exist in the optimization literature (see
Nemirovsky and Yudin, 1979; Li et al., 2022), and a common one coincides with the concept of a Legendre
function (see Bauschke et al., 2017; Bauschke and Borwein, 1997). In our proofs, we do not deal with extended
real-valued functions, and the term mirror map is applied to C∞-smooth strictly convex functions with coercive
gradients. In particular, our mirror maps are of Legendre type.

For such a mirror map Φ : Rd → R, we define the Bregman divergence DΦ(θ1, θ2) for θ1, θ2 ∈ Rd as

DΦ(θ1, θ2) = Φ(θ1)− Φ(θ2)− ⟨∇Φ(θ2), θ1 − θ2⟩.
Notice that due to the strict convexity of Φ, DΦ(θ1, θ2) > 0 whenever θ1 ̸= θ2.

Modified Cauchy Principal Value. Let f : R≥0 → [−∞,+∞] be an extended real-valued function with a
finite set of poles T = {T1, T2, . . . , TN} (i.e. points t ∈ R≥0 at which f(t) = ±∞) such that f is continuous on
R≥0 \ T . Let 0 < T1 < · · · < TN . Let T ∈ T and let ε > 0 be small enough such that (T − ε, T + ε) ∩ T = {T}.
Recall that, provided the limit below exists, the Cauchy principal value p.v.

∫ T+ε

T−ε f(t)dt is defined as

p.v.

∫ T+ε

T−ε
f(t)dt := lim

δ→0

[∫ T−δ

T−ε
f(t)dt+

∫ T+ε

T+δ

f(t)dt

]
.

Now, let εm > 0 be such that (Tm − εm, Tm + εm) ∩ T = {Tm} for m ∈ [N ]. Moreover, let T0 = ε0 = 0 and
TN+1 = +∞. Suppose f has finite Cauchy principal values at all poles. Then, for any τ ≥ 0 such that τ /∈ T , we
could define p.v.

∫ τ
0
f(t)dt as

p.v.

∫ τ

0

f(t)dt :=
∑

m:Tm+1<τ

[
p.v.

∫ Tm+εm

Tm−εm
f(t)dt+

∫ Tm+1−εm+1

Tm+εm

f(t)dt

]
+ p.v.

∫ Tk+εk

Tk−εk
f(t)dt+

∫ τ

Tk+εk

f(t)dt,

where Tk < τ < Tk+1.

For our proofs of Lemma 1 and Theorem 1, we require a modification to the Cauchy principal value. For the
aforementioned function f with the described properties and for T ∈ T , ε > 0 such that (T − ε, T + ε)∩T = {T},
we define the modified principal value m.p.v.

∫ T+ε

T−ε f(t)dt as

m.p.v.

∫ T+ε

T−ε
f(t)dt := lim

δ→0

[∫ T−δ

T−ε
f(t)dt · e δ

λ +

∫ T+ε

T+δ

f(t)dt · e− δ
λ

]
, (11)
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where λ denotes our familiar MGF parameter. We also extend the m.p.v. definition to integrals
∫ τ
0
f(t)dt for

arbitrary τ ≥ 0 by mimicking the Cauchy-principal-value construction:

m.p.v.

∫ τ

0

f(t)dt :=
∑

m:Tm+1<τ

[
m.p.v.

∫ Tm+εm

Tm−εm
f(t)dt+

∫ Tm+1−εm+1

Tm+εm

f(t)dt

]
+m.p.v.

∫ Tk+εk

Tk−εk
f(t)dt+

∫ τ

Tk+εk

f(t)dt,

where Tk < τ < Tk+1. Note that the above definition implies that whenever f has no poles on an interval
(a, b) ⊂ R≥0, then

m.p.v.

∫ b

a

f(t)dt =

∫ b

a

f(t)dt.

Additional Comments on the Discretisation of MGF(λ). Following our discussion from Section 2, we want
to point out that that there are other ways of discretising

λẅt + ẇt +∇F (wt) = 0.

Indeed, instead of discretising as (2) in the main paper

λ
wk+1 − 2wk + wk−1

ε2
+
wk − wk−1

ε
+∇F (wk) = 0,

one could also consider a central first-order difference:

λ
wk+1 − 2wk + wk−1

ε2
+
wk+1 − wk−1

2ε
+∇F (wk) = 0.

Rearranging, this leads to

wk+1 = wk −
ε2

λ(1 + ε
2λ )

∇F (wk) +
1− ε

2λ

1 + ε
2λ

(wk − wk−1),

which corresponds to momentum with γ = ε2

λ(1+ ε
2λ ) and β =

1− ε
2λ

1+ ε
2λ

. Solving for ε and λ, we get

λ =
(1 + β)γ

2(1− β)2
and ε =

γ

1− β
.

Hence, we obtain the same discretisation step ε as in Proposition 1 and a slightly different expression for λ. However,
note that the two versions of λ become indistinguishable for large values of β since 1+β

2 →β→1 1. Experimentally,
running MGF(λ) with the two different values for λ leads to similar results. Thus, the discretisation scheme from
the main paper was chosen due to the more concise definition of λ in this case.

B (w+, w−)-Reparametrisation

MGF Reparametrisation. We recall that we consider momentum gradient flow MGF(λ) with parameter λ > 0
over the diagonal-linear-network loss F ((u, v))) = L(u⊙ v):

λüt + u̇t +∇L(θt)⊙ vt = 0;

λv̈t + v̇t +∇L(θt)⊙ ut = 0.

For proof-writing convenience, we consider the simple reparametrisation outlined below.

In order to eliminate the cross-dependencies in (u, v) in the above equations, it is natural to consider the quantities
(w+,t, w−,t) where w±,t = ut ± vt for t ≥ 0. Hence, we get the following reparametrised ODE:{

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0;

w±,0 = u0 ± v0, ẇ±,0 = 0.
(12)
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Notice that with these new quantities, we have

θt =
w2

+,t − w2
−,t

4
and ∆t = |w+,tw−,t|.

MGD Reparametrisation. For the discrete-time setting, we follow the same reparametrisation from the MGD
recursion:

uk+1 = uk − γ∇L(θk)⊙ vk + β(uk − uk−1);

vk+1 = vk − γ∇L(θk)⊙ uk + β(vk − vk−1).

We let w±,k = uk ± vk for k ≥ 0. Then, for k ≥ 1, the equations above transform into{
w±,k+1 = w±,k ∓ γ∇L(θk)⊙ w±,k + β(w±,k − w±,k−1);

w±,1 = w±,0 = u0 ± v0.
(13)

Again, with the newly defined quantities, we have

θk =
w2

+,k − w2
−,k

4
and ∆k = |w+,kw−,k|.

C Continuous-Time Theorems

C.1 Convergence of Momentum Gradient Flow

Momentum gradient flow (with λ > 0),

λẅt + ẇt +∇F (wt) = 0,

also known in the optimisation literature as the heavy-ball with friction ODE or the heavy-ball dynamical system
with constant damping coefficient, has been the object of extensive mathematical study over the years (Haraux
and Jendoubi, 1998; Attouch et al., 2000; Alvarez, 2000; Goudou and Munier, 2009; Polyak and Shcherbakov,
2017; Apidopoulos et al., 2022). If we abstract away from the diagonal linear network setting and consider an
unspecified loss F ∈ C1(RD,R≥0) with locally Lipschitz gradient, we can still identify a useful Lyapunov function,
which perhaps motivated the study of the ODE in the first place. The function in question happens to be the
energy of the system

Et = F (wt) +
λ

2
∥ẇt∥22, (14)

whose nonpositive time-derivative Ėt = −∥ẇt∥22 allows us to prove the global existence and uniqueness of a
solution to MGF [Attouch et al. (2000), Theorem 3.1] in this more general setting. We note that by an easy
inductive argument, when the function F is Ck-smooth, the MGF solution wt is C

k+1-smooth. Hence, in our
setting where the diagonal-neural-network loss F is C∞-smooth, the learning trajectory wt is also C

∞-smooth.

Convergence under Assumption 1.

Under the assumption of a bounded trajectory – wt ∈ L∞(0,∞), one can prove the following convergences (Attouch
et al., 2000):

lim
t→∞

ẇt = lim
t→∞

∇F (wt) = 0.

However, even when bounded, the iterates wt need not converge as demonstrated by the coercive function from
Section 4.3 in (Attouch et al., 2000). Nevertheless, when the loss F is also analytic, as in the case of diagonal
linear networks, assuming boundedness, one can further prove iterate convergence limt→∞ wt = w∞ [Haraux and
Jendoubi (1998)].

Unfortunately, without assuming boundedness, iterate convergence has been established only in the cases of convex
loss [Alvarez (2000)], quasiconvex loss [Goudou and Munier (2009)], and loss satisfying the Polyak-Lojasiewicz
inequality [Apidopoulos et al. (2022)]. Thus, the square loss for a diagonal linear network (and neural networks
in general) falls out of the scope of these few favorable cases due to non-convexity and an abundance of local and
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global minima. For that reason, we posit Assumption 1, which holds true empirically in all our experiments on
diagonal linear networks.

Convergence to 0 Loss under Assumption 2.

Let us now go back to the specific case of diagonal linear networks where the loss is given by F (w) = L(u⊙ v) for
w = (u, v). Notice that from the discussion above, if we assume boundedness of the trajectory, we have

lim
t→∞

∇F (wt) = (∇L(θ∞)⊙ v∞,∇L(θ∞)⊙ u∞) = 0.

Therefore, since ∇L(θ∞)⊙∆∞ = 0, if the balancedness at infinity ∆∞ has nonzero coordinates, we can conclude
that ∇L(θ∞) = 0. Recalling that L is convex, we get that L(θ∞) = 0. Hence, θ∞ interpolates the dataset.

C.2 Proof of Time-Varying Momentum Mirror Flow

In our discussion in Appendix C.1, we saw that assuming

1) iterate boundedness: ut, vt ∈ L∞(0,∞), and

2) nonzero balancedness at infinity: ∆∞,i ̸= 0, ∀i ∈ [d],

we can prove that MGF over a diagonal linear network (4) converges to an interpolator θ∞.4 Before we jump
into the proof of Proposition 4, we need to establish the following lemma.

Lemma 3. Assuming that ut, vt ∈ L∞(0,∞) and ∆∞,i ̸= 0, ∀i ∈ [d], the following integral limit exists:

lim
t→∞

∫ t

0

∇L(θs)ds =
∫ ∞

0

∇L(θt)dt.

Consequently,

lim
t→∞

∫ t

0

∇L(θs)e−
t−s
λ ds = 0.

Proof. Let us consider the (w+, w−)-reparametrisation of MGF (4) given by Equation (12):

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0.

Since we assumed that ∆∞ has nonzero coordinates, there exists T ≥ 0 such that for all t ≥ T , w±,t have nonzero
coordinates. Hence, for t ≥ T , we can safely divide by w±,t to obtain

λ
d2 ln |w±,t|

dt2
+

d ln |w±,t|
dt

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0.

Let us notice a couple of things. First, as we discussed in Appendix C.1, the boundedness of the iterates
forces w±,t to converge to some vectors w±,∞ with nonzero coordinates since we assumed the coordinates of
∆∞ = w+,∞w−,∞ are nonzero. Hence,

∥ ẇ
2
±,t

w2
±,t

∥∞ ≤ const · (∥u̇2t∥∞ + ∥v̇2t ∥∞),

where the RHS is integrable as we saw in the proof of Proposition 3. Second, from the discussion in Appendix C.1,

we know that limt→∞ ẇ±,t = 0, so limt→∞
d ln |w±,t|

dt = 0.

Now, for t ≥ T , ∫ t

T

∇L(θs)ds = ∓
(
λ

∫ t

T

d2 ln |w±,s|
dt2

ds+

∫ t

T

d ln |w±,s|
dt

ds+

∫ t

T

(
ẇ±,t
w±,t

)2

ds

)

= ∓
(
λ
d ln |w±,s|

dt

∣∣∣t
T
+ ln |w±,s|

∣∣∣t
T
+

∫ t

T

(
ẇ±,t
w±,t

)2

ds

)
.

4Note that we also refer to θ∞ as θMGF.
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So, using the above observations and letting t→ ∞ yields

lim
t→∞

∫ t

T

∇L(θs)ds = ∓
(
−λd ln |w±,T |

dt
− ln |w±,T |+ ln |w±,∞| −

∫ ∞

T

(
ẇ±,t
w±,t

)2

dt

)
.

Thus, we conclude that limt→∞
∫ t
0
∇L(θs)ds exists, and therefore, limt→∞

∫ t
0
∇L(θs)e−

t−s
λ ds = 0.

We are now well-equipped to prove Proposition 4. We note that we phrased Proposition 4 rather succinctly in
the main part of the paper due to space considerations. In what follows, we restate Proposition 4 by precisely
specifying the underlying assumptions.

Proposition. Assume the solution (ut, vt) of MGF (4) is bounded. If we also assume that the balancedness at
infinity ∆∞ has nonzero coordinates, then there exists a time T ≥ 0, after which the predictors θt = ut ⊙ vt follow
a momentum mirror flow with time-varying potentials Φt:

λ
d2∇Φt(θt)

dt2
+

d∇Φt(θt)

dt
+∇L(θt) = 0.

Furthermore, if we assume that the balancedness ∆t remains nonzero for t ∈ [0,+∞], then the momentum mirror
flow holds for every t ≥ 0.

Proof. We will consider the (w+, w−)-reparametrisation of momentum gradient flow (4) introduced in Appendix B.
For convenience of the reader, we recall this reparametrisation here:

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0.

Now, let ξ : R≥0 → Rd be the C∞(0,∞) solution of the following ODE:

λξ̈t + ξ̇t +∇L(θt) = 0,

with the constraint ξ0 = ξ̇0 = 0. Hence, by Lemma 5,

ξt = −
∫ t

0

∇L(θs)(1− e−
t−s
λ )ds,

and by Lemma 3,

ξ∞ = −
∫ ∞

0

∇L(θt)dt.

Thus, ξt ∈ span(x1, . . . , xn), ∀t ∈ [0,+∞].

Having fixed ξt, we define the quantities α±,t for every t ∈ [0,+∞] through the following relation:

α±,t = w±,t exp(∓ξt).

So, ∆t = |w+,tw−,t| = |α+,tα−,t|. Furthermore,

θt =
1

4
(w2

+,t − w2
−,t)

=
1

4
(α2

+,t exp(2ξt)− α2
−,t exp(−2ξt))

=
1

2
∆t sinh

(
2ξt + ln

|α+,t|
|α−,t|

)

Since we assumed that ∆∞ has nonzero coordinates, there exists T ≥ 0 such that for all t ≥ T , w±,t have nonzero

coordinates. Hence, for t ≥ T , the logarithm ln
|α+,t|
|α−,t| is well-defined. If we assume positive balancedness for

t ∈ [0,+∞], then we can choose T = 0. From now until the end of the proof, whenever a time-dependent quantity
features division by ∆t, we will tacitly assume that t ≥ T .
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Let us now introduce the helper quantity ϕt through the following identity:

ϕt =
1

2
ln

|α+,t|
|α−,t|

=
1

2
arcsinh

(
α2
+,t − α2

−,t
2∆t

)
.

Then,
1

2
arcsinh

(
2θt
∆t

)
− ϕt = ξt ∈ span(x1, . . . , xn).

So, if we consider the time-varying potential

Φt(θ) =
1

4

d∑
i=1

(
2θi arcsinh

(
2θi
∆t,i

)
−
√
4θ2i +∆2

t,i +∆t,i

)
− ⟨ϕt, θ⟩

= ψ∆t(θ)− ⟨ϕt, θ⟩,
(15)

where ψ∆t
is the hyperbolic entropy defined in Equation (6), then

∇Φt(θ) =
1

2
arcsinh

(
2θ

∆t

)
− ϕt.

Notice that ∇2Φt = diag
(
1/
√
4θ2 +∆2

t

)
≻ 0. Hence, Φt is a mirror map. Furthermore, ∇Φt(θt) = ξt for t ≥ T ,

so

λ
d2∇Φt(θt)

dt2
+

d∇Φt(θt)

dt
+∇L(θt) = 0.

C.3 Proof of Theorem 1

We are now ready to prove our main result for the implicit bias of momentum gradient flow on diagonal linear
networks.

Theorem 1. The solution θMGF of MGF (4) interpolates the dataset and satisfies the following implicit regularisa-
tion:

θMGF = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞ , where the asymptotic

balancedness equals

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)
and θ̃0 = 1

4 (w
2
+,0 ⊙ exp (−2I+)− w2

−,0 ⊙ exp (−2I−)) denotes a perturbed initialisation term.

We split the proof into two parts for conceptual clarity. In the first part, we utilise the time-varying mirror flow
from Proposition 4 to derive the implicit regularisation θMGF = argminθ⋆∈S Dψ∆∞

(θ⋆, θ̃0). Then, in the second
part, we prove that the integral quantities I± from Lemma 1 are well-defined, and we give the trajectory-dependent
characterisations of the asymptotic balancedness ∆∞ and the perturbed initialisation θ̃0.

C.3.1 Proof of Implicit Regularisation.

In Proposition 4, we proved that whenever the MGF trajectory is bounded and the coordinates of ∆∞ are nonzero,
there exists a time T ≥ 0, after which the predictors θt follow a momentum mirror flow with potentials given by
Equation (15). Recall that for t ≥ T ,

∇Φt(θt) =
1

2
arcsinh

(
2θ

∆t

)
− ϕt = −ξt ∈ span(x1, . . . , xn).

where ξt = −
∫ t
0
∇L(θs)(1− e−

t−s
λ )ds, α±,t = w±,t exp(∓ξt), and ϕt = 1

2 arcsinh
(
α2

+,t−α2
−,t

2∆t

)
.
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Now, as t → ∞, ξt and the MGF iterates converge, so we know that ∇Φ∞(θ∞) ∈ span(x1, . . . , xn), where
Φ∞(θ) = ψ∆∞(θ)− ⟨ϕ∞, θ⟩. Thus, we can use the familiar Bregman-Cosine-Theorem trick to characterise the
interpolator θ∞. We proceed with this characterisation.

Let θ̃0 be a perturbation term such that ∇Φ∞(θ̃0) = 0. Equivalently,

1

2
arcsinh

(
2θ̃0
∆2∞

)
− ϕ∞ = 0 ⇐⇒

arcsinh

(
2θ̃0
∆2∞

)
− arcsinh

(
α2
+,∞ − α2

−,∞
2∆2∞

)
= 0 ⇐⇒

θ̃0 =
α2
+,∞ − α2

−,∞
4

.

Note that α±,∞ = w±,∞ exp(±
∫∞
0

∇L(θt)dt) by Lemma 3 and ∆∞ = |α+,∞α−,∞|.
Now, let θ⋆ ∈ S be an arbitrary interpolator of the dataset. Then, θ⋆− θ∞ ∈ ker(X) = span(x1, . . . , xn)

⊥. Hence,
the Bregman Cosine Theorem yields

DΦ∞(θ⋆, θ̃0) = DΦ∞(θ⋆, θ∞) +DΦ∞(θ∞, θ̃0) + ⟨θ⋆ − θ∞,∇Φ(θ∞)−∇Φ(θ̃0)⟩
= DΦ∞(θ⋆, θ∞) +DΦ∞(θ∞, θ̃0),

where we used that ∇Φ(θ∞)−∇Φ(θ̃0) ∈ span(x1, . . . , xn). Thus,

θ∞ = argmin
θ⋆∈S

DΦ∞(θ⋆, θ̃0)

= argmin
θ⋆∈S

Φ∞(θ⋆).

Finally, notice that ∇ψ∆∞(θ̃0) =
1
2 arcsinh

(
2θ̃0
∆∞

)
= ϕ∞ as we showed above. Hence,

Dψ∆∞
(θ, θ̃0) = Φ∞(θ)− ψ∆∞(θ̃0) + ⟨∇ψ∆∞(θ̃0), θ̃0⟩.

Thus, we conclude that
θ∞ = argmin

θ⋆∈S
Φ∞(θ⋆) = argmin

θ⋆∈S
Dψ∆∞

(θ⋆, θ̃0).

C.3.2 Proof of Trajectory-Dependent Characterisation.

We just showed that the recovered interpolator by MGF solves the constrained minimisation problem
θ∞ = argminθ⋆∈S Dψ∆∞

(θ⋆, θ̃0), where ∆∞ = |α+,∞α−,∞|, θ̃0 = (α2
+,∞ − α2

−,∞)/4, and α±,∞ =

w±,∞ exp(±
∫∞
0

∇L(θt)dt). Clearly, these opaque characterisations of ∆∞ and θ̃0 prevent us from describ-
ing how the magnitude of these quantities compares to the magnitude of the initial balancedness ∆0 and the
initialisation scale α = max(|u0|, |v0|). Ideally, we would like to find formulas for ∆∞ and θ̃0 which show that
θ̃0 ≪ θ⋆, ∀θ⋆ ∈ S and ∆∞ < ∆0 so that we can conclude that θMGF ≈ argminθ⋆∈S ψ∆∞(θ⋆) enjoys better sparsity
guarantees than θGF ≈ argminθ⋆∈S ψ∆0

(θ⋆). In what follows, we derive such formulas.

In our subsequent arguments, for a vector z ∈ Rd and a coordinate i ∈ [d], we will denote with z(i) the ith

coordinate of z in order to reduce the index bloat. Let us consider again the (w+, w−)-reparametrisation of MGF
discussed in Appendix B:

λẅ±,t + ẇ±,t ±∇L(θt)⊙ w±,t = 0. (16)

Notice that if for some T > 0 and i ∈ [d], w+,T (i) = 0, then ẇ+,T (i) must be nonzero. Indeed, as we argued in
Appendix C.1, MGF (4) admits a unique global solution. And if w+,T (i) = ẇ+,T (i) = 0, then we could construct
another solution (w′

+,t, w
′
−,t) of MGF such that w′

+,t(i) = ẇ′
+,t(i) = 0, ∀t ≥ 0, and w±,T = w′

±,T . By uniqueness,
we get that w±,t = w′

±,t, ∀t ≥ 0 However, the newly constructed solution will not be consistent with the imposed
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initialisation ∆0 ̸= 0,. Hence, ∆0 ̸= 0 prevents w+,t(i) and ẇ+(i) from hitting 0 simultaneously. Similarly, this
situation cannot occur for w−,t.

Until further notice, we fix a coordinate i ∈ [d] and consider eq. (16) only in the ith coordinate without explicit
mention. If w±,T = 0 for some T > 0, then ẇ±,T ̸= 0. Hence, for some small δ > 0, ẇ±,t does not change
sign on [T − δ, T + δ], so w±,t either strictly increases or decreases on [T − δ, T + δ]. Therefore, w±,t ̸= 0 on
[T −δ, T +δ]\{T} implying that w±,t equals 0 at most a countable number of times. Recall that by Assumption 2,
there exists a time T∞ after which w± does not change sign. Therefore, if we assume that w± vanishes on infinitely
many points T1 < T2 < · · · < T∞, then by compactness, the limit τ = limm→∞ Tm exists. Since w± is continuous,
we infer that w±,τ = 0. Moreover, by the Mean Value Theorem, for every m ≥ 1, there exists T ′

m ∈ (Tm, Tm+1)
such that ẇT ′

m
= 0. Notice that limm→∞ T ′

m = τ as well. Hence, by continuity, w±,τ = ẇ±,τ = 0 – a contradiction.

Hence, w± vanishes on a finite set of points. Let us order these vanishing times as 0 < T1 < · · · < TN and let
T0 = 0 and TN+1 = +∞. Observe that for t /∈ T = {Ti : i ∈ [N ]}, we can safely divide both sides of eq. (16) by
w±,t to obtain

λ
ẅ±,t
w±,t

+
ẇ±,t
w±,t

±∇L(θt) = 0.

The last expression is equivalent to

λ

(
ẅ±,t
w±,t

−
(
ẇ±,t
w±,t

)2
)

+
ẇ±,t
w±,t

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0,

which can be rewritten as

λ
d2 ln(sgn(w±,t)w±,t)

dt2
+

d ln(sgn(w±,t)w±,t)
dt

±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0.

Let us define a new function g± : R≥0 \ T → Rd through the relation g±,t = ln(sgn(w±,t)w±,t). Then, g± is
C∞-smooth on R≥0 \ T and satisfies the following ODE:

λg̈±,t + ġ±,t ±∇L(θt) + λ

(
ẇ±,t
w±,t

)2

= 0. (17)

Induction on Vanishing Times. Now, we proceed to prove by induction on N − 1 ≥ m ≥ 0 that for
τ ∈ (Tm, Tm+1) the following 3 things hold:

• The following integral quantities5 exist and are finite:

m.p.v.

∫ τ

0

( ẇ±,t
w±,t

)2
e−

τ−s
λ sgn(w±,τw±,t)dt and

∫ τ

0

m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt.

• The following identity holds:

ġ±,τ = −m.p.v.

∫ τ

0

[( ẇ±,t
w±,t

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(w±,τw±,t)dt−

1

λ

m∑
k=1

(−1)m−ke−
τ−Tk

λ .

• The following identity holds:

g±,τ = g±,0 −
∫ τ

0

m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

−
m∑
k=1

(−1)m−k
(
1− e−

τ−Tk
λ

)
+ 2

∑
1≤i<j≤m

(−1)j−i
(
1− e−

Tj−Ti
λ

)
.

5See Equation (11) for the definition of m.p.v.
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Recall that ∇L(θt) is a bounded function, so if the modified principal value from the first bullet point exists,
then the modified principal values in the above identities are also well-defined.

Base case: m = 0. Recall from the proof of Proposition 4 in Appendix C.2 that ẇ± ∈ L2(0,∞). Now, since
w±,t does not change signs on the interval (T0, τ), we know that 1/w±,t = Ω(1). Hence,

( ẇ±,s
w±,s

)2
e−

t−s
λ ∈ L1(0,∞).

Similarly,
(
ẇ±,s

w±,s

)2
is integrable on all intervals [Ti + ε, Ti+1 − ε] for any small ε > 0. Consequently, the integral

quantities

m.p.v.

∫ τ

0

( ẇ±,t
w±,t

)2
e−

t−s
λ sgn(w±,τw±,t)dt =

∫ τ

0

( ẇ±,t
w±,t

)2
e−

t−s
λ dt

and ∫ τ

0

m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt =

∫ τ

0

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ ds dt

=

∫ τ

0

( ẇ±,s
w±,s

)2
(1− e−

τ−t
λ )dt

are well-defined. Moreover, after applying Lemma 5 to eq. (17), we get

ġ±,τ = −
∫ τ

0

( ẇ±,t
w±,t

)2
e−

τ−t
λ dt ∓ 1

λ

∫ τ

0

∇L(θt)e−
τ−t
λ dt

g±,τ = g±,0 − λ

∫ τ

0

( ẇ±,s
w±,s

)2
(1− e−

τ−t
λ )dt ∓

∫ τ

0

∇L(θt)(1− e−
τ−t
λ )dt,

which concludes the proof of the base case.

Induction step: m→ m+ 1. For m ≥ 0, assume that for every τ ∈ [0, Tm+1) \ T the expressions

ġ±,τ = −m.p.v.

∫ τ

0

[( ẇ±,t
w±,t

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(w±,τw±,t)dt−

1

λ

m∑
k=1

(−1)m−ke−
τ−Tk

λ

and

g±,τ = g±,0 −
∫ τ

0

m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

−
m∑
k=1

(−1)m−k
(
1− e−

τ−Tk
λ

)
+ 2

∑
1≤i<j≤m

(−1)j−i
(
1− e−

Tj−Ti
λ

)
.

are true and well-defined. We now want to extend the validity of these identities to τ ∈ (Tm+1, Tm+2). For ease
of notation during the induction step, let Tm+1 = T , w± = w, and g± = g. Let ε > 0 and let T± = T ± ε.

Now, applying Lemma 5 to eq. (17) yields

ġτ = ġT+
e−

τ−T+
λ −

∫ τ

T+

[( ẇt
wt

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ dt

gτ = gT+ + ġT+

∫ τ

T+

e−
t−T+

λ dt−
∫ τ

T+

∫ t

T+

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ ds dt.

For further ease of notation and with some abuse of notation, let ft =
(
ẇt

wt

)2
± 1

λ∇L(θt) on R≥0 \ T . We will
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shortly prove that gT+ − gT− = O(ε) and ġT+ + ġT− + 1
λ = O(ε).6 Hence, the following limits will hold:

ġτ = lim
ε→0

[
− 1

λ
e−

τ−T+
λ − ġT−e

− τ−T+
λ −

∫ τ

T+

fte
− τ−t

λ dt

]

gτ = lim
ε→0

[
gT− − 1

λ

∫ τ

T+

e−
t−T+

λ dt− ġT−

∫ τ

T+

e−
t−T+

λ dt−
∫ τ

T+

∫ t

T+

fse
− t−s

λ ds dt

]
.

Induction step for ġτ . Let us begin to untangle the first limit by substituting ġT− with its integral formula
given by the induction hypothesis. Notice that

ġT−e
− τ−T+

λ = −m.p.v.

∫ T−

0

fte
−T−−t

λ sgn(wT−wt)dt · e−
τ−T+

λ − e−
τ−T+

λ

λ

m∑
k=1

(−1)m−ke−
T−−Tk

λ

= m.p.v.

∫ T−

0

fte
− τ−t

λ sgn(wτwt)dt · e
2ε
λ +

e
2ε
λ

λ

m∑
k=1

(−1)(m+1)−ke−
τ−Tk

λ ,

where we used that sgn(τ) = − sgn(T−) since w changes signs at T . Hence, we have that

ġτ = − lim
ε→0

[ 1
λ
e−

τ−T+
λ +

e
2ε
λ

λ

m∑
k=1

(−1)(m+1)−ke−
τ−Tk

λ

+m.p.v.

∫ T−

0

fte
− τ−t

λ sgn(wτwt)dt · e
2ε
λ +

∫ τ

T+

fte
− τ−t

λ sgn(wτwt)dt
]

= ∓
∫ τ

0

1

λ
∇L(θt) sgn(wτwt)−

1

λ

m+1∑
k=1

(−1)(m+1)−ke−
τ−Tk

λ

− lim
ε→0

[
m.p.v.

∫ T−

0

( ẇt
wt

)2
e−

τ−t
λ sgn(wτwt)dt · e

2ε
λ +

∫ τ

T+

( ẇt
wt

)2
e−

τ−t
λ sgn(wτwt)dt

]
,

where the limit on the last line formally equals the modified principal value m.p.v.
∫ τ
0

(
ẇt

wt

)2
e−

τ−s
λ sgn(wτwt)dt

whose existence we want to prove as part of the induction step. In fact, notice that we just proved the existence

of m.p.v.
∫ τ
0

(
ẇt

wt

)2
e−

τ−s
λ sgn(wτwt)dt since both ġτ and ∓

∫ τ
0

1
λ∇L(θt) sgn(wτwt) are finite quantities. Hence,

for τ ∈ (Tm+1, Tm+2),

ġτ = −m.p.v.

∫ τ

0

[( ẇt
wt

)2
± 1

λ
∇L(θt)

]
e−

τ−t
λ sgn(wτwt)dt−

1

λ

m+1∑
k=1

(−1)(m+1)−ke−
τ−Tk

λ .

Induction step for gτ . We move on to untangle the limit which equals gτ . By the induction hypothesis,

ġT− = −m.p.v.

∫ T−

0

fte
−T−−t

λ sgn(wT−wt)dt−
1

λ

m∑
k=1

(−1)m−ke−
T−−Tk

λ

gT− = g0 −
∫ T−

0

m.p.v.

∫ t

0

fse
− t−s

λ sgn(wtws)ds dt

−
m∑
k=1

(−1)m−k
(
1− e−

T−−Tk
λ

)
+ 2

∑
1≤i<j≤m

(−1)j−i
(
1− e−

Tj−Ti
λ

)
.

6Whenever we write an equation of the form A = B + O(εr) for some r > 0, we mean that A = B + C, where
|C| = O(εr).
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Again, we can substitute sgn(wT−) with − sgn(wτ ), and after performing the familiar integral and limit manipu-
lations, we obtain

gτ = g0 ∓
∫ τ

0

∫ t

0

1

λ
∇L(θs)e−

t−s
λ sgn(wtws)ds dt− lim

ε→0
[Aε +Bε + Cε]

−
m+1∑
k=1

(−1)(m+1)−k
(
1− e−

τ−Tk
λ

)
+ 2

∑
1≤i<j≤m+1

(−1)j−i
(
1− e−

Tj−Ti
λ

)
,

where

Aε =

∫ T−

0

m.p.v.

∫ t

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt

Bε =

∫ τ

T+

m.p.v.

∫ T−

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt · e 2ε

λ

Cε =

∫ τ

T+

∫ t

T+

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt.

Figure 5: A visualisation of the areas over which we integrate
(
ẇs

ws

)2
e−

t−s
λ sgn(wtws) in the above limit.

Notice that formally the limit limε→0[Aε +Bε + Cε] equals the integral quantity∫ τ

0

m.p.v.

∫ t

0

( ẇs
ws

)2
e−

t−s
λ sgn(wtws)ds dt,

whose existence we just proved as a consequence of the fact that

g0∓
∫ τ

0

∫ t

0

1

λ
∇L(θs)e−

t−s
λ sgn(wtws)ds dt−

m+1∑
k=1

(−1)(m+1)−k
(
1− e−

τ−Tk
λ

)
+2

∑
1≤i<j≤m+1

(−1)j−i
(
1− e−

Tj−Ti
λ

)
−gτ

is well-defined and finite. Thus, for τ ∈ (Tm+1, Tm+2),

gτ = g0 −
∫ τ

0

m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

−
m+1∑
k=1

(−1)(m+1)−k
(
1− e−

τ−Tk
λ

)
+ 2

∑
1≤i<j≤m+1

(−1)j−i
(
1− e−

Tj−Ti
λ

)
.



Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks

Proof of bounds. In order to conclude the induction step, we still have to prove the following bounds:

gT+
− gT− = O(ε) and ġT+

+ ġT− +
1

λ
= O(ε).

Recall that gT±ε = log |wT±ε| and that wT = 0, ẇT ̸= 0. From the Taylor expansion of wt, we know that

wT±ε = ±εẇT +O(ε2).

Hence, |wT+ε/wT−ε| = 1 +O(ε). Therefore, using the Taylor expansion of the logarithm around 1, we get that

|gT+ − gT− | = | log(1 +O(ε))| = O(ε).

Now, recall that ġT±ε = ẇT±ε/wT±ε and observe that

wT±ε = ±εẇT +
1

2
ε2ẅT +O(ε3)

ẇT±ε = ẇT ± εẅT +O(ε2).

Hence,
wT+εẇT−ε + wT−εẇT+ε

wT+εwT−ε
=

−ε2ẇT ẅT +O(ε3)

−ε2ẇ2
T +O(ε3)

=
ẅT
ẇT

+O(ε).

Since, λẅT + ẇT ±∇L(θT )⊙ wT = 0 and wT = 0, we get that ẅT

ẇT
= − 1

λ , which concludes the induction step.

Proof of Lemma 1. Thus, we proved that for τ ∈ (Tm, Tm+1), m ∈ {0, 1, . . . , N},

ln |wτ | = ln |w0| −
∫ τ

0

m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

−
m∑
k=1

(−1)m−k
(
1− e−

τ−Tk
λ

)
+ 2

∑
1≤i<j≤m

(−1)j−i
(
1− e−

Tj−Ti
λ

)
.

Recall that throughout our inductive proof we worked with a fixed coordinate i ∈ [d] of w±. Different coordinates
of w± vanish at different points in time, so writing the sum the last line in a coordinate-agnostic way becomes
impossible. Thus, deriving a simple expression for the full d-dimensional vector w±,τ for any τ ∈ R≥0 also
becomes impossible. However, remembering that the finite nonzero limits limτ→∞ |w±,τ | = |w±,∞| exist and
letting τ → ∞ yields an interesting result for the weights at infinity. Indeed, notice that for every vanishing time

T , limτ→∞
(
1− e−

τ−Tk
λ

)
= 1. Hence,

1

λ

N∑
k=1

(−1)N−k
(
1− e−

τ−Tk
λ

)
= 1{N− odd}.

For every i ∈ [d], let N±(i) denote the number of vanishing points for the coordinate w±(i). Let us define the
d-dimensional parity vectors P± ∈ {0, 1}d such that P±(i) ≡ N±(i) mod 2. Let us also define the d-dimensional
vectors Q± ∈ Rd such that for each coordinate k ∈ [d],

Q±(k) := −2
∑

1≤i<j≤N±(k)

(−1)j−i
(
1− e−

T±,k(j)−T±,k(i)

λ

)
,

where 0 < T±,k(1) < · · · < T±,k(N±(k)) denote the vanishing times of the weight w±(k). Hence, we obtain the
formula

|w±,∞| = |w±,0|e−(P±+Q±) exp

(
−
∫ ∞

0

m.p.v.

∫ t

0

[( ẇ±,s
w±,s

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w±,tw±,s)ds dt

)
. (18)

Recall that in Lemma 3, we proved that the limit

lim
t→∞

∫ t

0

∇L(θs)ds =
∫ ∞

0

∇L(θt)dt =
1

λ

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ ds dt
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exists and is finite. Therefore, we can decouple
(
ẇ±,s

w±,s

)2
and ∇L(θs) from the above integral and show that the

following integral limits exist and are finite:∫ ∞

0

m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt and

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ sgn(w±,tw±,s)ds dt.

Hence, the integral quantities Ω± from Lemma 1 are well-defined and finite. Thus, we finally proved Lemma 1.

Trajectory-Dependent Characterisation. We started this section with a promise for more insightful
representations of ∆∞ = |α+,∞α−,∞| and θ̃0 = (α2

+,∞ − α2
−,∞)/4. We now deliver on that promise.

Recall that α±,∞ = w±,∞ exp
(
±
∫∞
0

∇L(θt)dt
)
and notice that∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ ds dt−

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ sgn(w±,tw±,s)ds dt = 2

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ 1{w±,tw±,s<0}ds dt.

Hence, using the formula for w± from Equation (18), we derive the following:

|α±,∞| = |w±,0|e−(P±+Q±) ⊙ exp

(
−
∫ ∞

0

m.p.v.

∫ t

0

( ẇ±,s
w±,s

)2
e−

t−s
λ sgn(w±,tw±,s)ds dt

)
⊙ exp

(
± 2

λ

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ 1{w±,tw±,s<0}ds dt

)
.

Now, let

Λ± := ∓ 2

λ

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ 1{w±,tw±,s<0}ds dt+ P± +Q±, (19)

where the quantities P± and Q± were defined in the previous paragraph. Notice that as we promised underneath
Lemma 1, Λ± vanish whenever the balancedness ∆t remains strictly positive. Using the abbreviation I± = Ω±+Λ±,
we get that

|α±,∞| = |w±,0| ⊙ exp (−I±) .
Multiplying |α+,∞| by |α−,∞|, we derive a formula for the asymptotic balancedness:

∆∞ = ∆0e
−(P++P−+Q++Q−) ⊙ exp

(
−
∫ ∞

0

m.p.v.

∫ t

0

[( ẇ+,s

w+,s

)2
+

1

λ
∇L(θs)

]
e−

t−s
λ sgn(w+,tw+,s)ds dt

)
⊙ exp

(
−
∫ τ

0

m.p.v.

∫ t

0

[( ẇ−,s
w−,s

)2
− 1

λ
∇L(θs)

]
e−

t−s
λ sgn(w−,tw−,s)ds dt

)
⊙ exp

(
2

λ

∫ ∞

0

∫ t

0

∇L(θs)e−
t−s
λ

[
1{w+,tw+,s<0} − 1{w−,tw−,s<0}

]
ds dt

)
.

(20)

Now, we can write ∆∞ and θ̃0 more succinctly as

∆∞ = ∆0 ⊙ exp
(
− (I+ + I−)

)
and

θ̃0 =
1

4

(
w2

+,0 ⊙ exp (−2I+)− w2
−,0 ⊙ exp (−2I−)

)
,

which concludes the proof of Theorem 1.

C.3.3 Consequences for Generalisation.

We just proved that whenever MGF on a diagonal linear network converges and the balancedness at infinity is
nonzero, we can characterize the recovered interpolator through the implicit regularization problem

θMGF = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0)

= argmin
θ⋆∈S

[
ψ∆∞(θ⋆)− ⟨∇ψ∆∞(θ̃0), θ

⋆⟩
]
.
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Since

ψ∆∞(θ) =
1

4

d∑
i=1

(
2θi arcsinh

(
2θi
∆∞,i

)
−
√
4θ2i +∆2

∞,i +∆∞,i

)
and

∇ψ∆∞(θ) =
1

2
arcsinh

(
2θ

∆∞

)
,

for a small asymptotic balancedness ∆∞ = O(∆0) = O(α2) and small perturbed initialisation |θ̃0| = O(α2) ≪ |θ⋆|,
we would expect ψ∆∞(θ⋆) to dominate ⟨∇ψ∆∞(θ̃0), θ

⋆⟩. More formally, for a fixed θ⋆ ∈ S and small ∆∞ and θ̃0,
we have the following asymptotic equivalence:

ψ∆∞(θ⋆) ∼
α→0

Dψ∆∞
(θ⋆, θ̃0).

Hence, θMGF ≈ argminθ⋆∈S ψ∆∞(θ⋆) = θGF∆∞
as we discussed in Section 3.1. So, if ∆∞ < ∆0, Lemma 4 implies that

the MGF predictor will benefit from better sparsity guarantees than the GF solution.

Therefore, to recap, for a small initialisation scale α and provided that the bounds ∆∞ = O(α2) and θ̃0 = O(α2)
hold, we conclude that the asymptotic balancedness at infinity ∆∞ roughly controls the sparsity of the recovered
interpolator. And when ∆∞ < ∆0, θ

MGF will be sparser than θGFα . Unfortunately, without the assumption that the
balancedness ∆t remains strictly positive for all t ∈ [0,+∞], we cannot formally compare ∆∞ and θ̃0 with α.

Note that even without the bounds ∆∞ = O(α2) and θ̃0 = O(α2), if |θ̃0| ≪ |θ⋆|, then ψ∆∞(θ⋆) still dominates
⟨∇ψ∆∞(θ̃0), θ

⋆⟩. Indeed, our experiments clearly show that the perturbation term θ̃0 can safely be ignored since
θMGF ≈ argminθ⋆∈S ψ∆∞(θ⋆) (see the discussion around Figure 8.)

C.4 Non-Vanishing Balancedness

If we work under the assumption that the balancedness ∆t = |w+,tw−,t| never vanishes, then much of the analysis
from Appendix C.3.2 greatly simplifies. First, the integral quantities P± and Q± from the previous subsection
become 0. Second, the multipliers sgn(w±,tw±,s) become equal to 1 for all t, s ∈ R≥0. Hence, using Fubini’s
Theorem as in the proof of Lemma 5, we get that∫ τ

0

m.p.v.

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ sgn(wtws)ds dt

=

∫ τ

0

∫ t

0

[( ẇs
ws

)2
± 1

λ
∇L(θs)

]
e−

t−s
λ ds dt

= λ

∫ τ

0

( ẇt
wt

)2 (
1− e−

τ−t
λ

)
dt±

∫ τ

0

∇L(θt)
(
1− e−

τ−t
λ

)
dt.

Therefore, referencing eq. (18), we can express the evolution of the iterates as follows:

w±,τ = w±,0 exp

(
−λ
∫ τ

0

( ẇ±,t
w±,t

)2 (
1− e−

τ−t
λ

)
dt

)
exp

(
∓
∫ τ

0

∇L(θs)
(
1− e−

τ−t
λ

)
dt

)
. (21)

Thus, the balancedness evolves as

∆t = ∆0 exp

(
−λ
∫ τ

0

[( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2](
1− e−

τ−t
λ

)
dt

)
. (22)

Now, from Lemma 3, we know that
(
ẇ±,t

w±,t

)2
is integrable and that

lim
τ→∞

∫ τ

0

∇L(θs)
(
1− e−

τ−t
λ

)
dt =

∫ ∞

0

∇L(θs)dt

exists. Furthermore, from Lemma 6, we know that that

lim
τ→∞

∫ τ

0

( ẇ±,t
w±,t

)2 (
1− e−

τ−t
λ

)
dt =

∫ ∞

0

( ẇ±,t
w±,t

)2
)dt.
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Therefore, letting τ → ∞, we obtain the formulas

w±,τ = w±,0 exp

(
−λ
∫ ∞

0

( ẇ±,t
w±,t

)2
dt

)
exp

(
∓
∫ ∞

0

∇L(θs)dt
)

(23)

∆∞ = ∆0 exp

(
−λ
∫ ∞

0

[( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2]
dt

)
. (24)

Hence, clearly, ∆∞ < ∆0.

Finally, let us consider how the perturbed initialisation θ̃0 looks like when ∆t remains nonzero. Recall that
θ̃0 = (α2

+ − α2
−)/4, where α±,∞ = w±,∞ exp

(
±
∫∞
0

∇L(θt)dt
)
. Thus,

α±,∞ = w±,0 exp

(
−λ
∫ ∞

0

( ẇ±,t
w±,t

)2
dt

)
and

θ̃0 =
1

4

[
w2

+,0 exp

(
−2λ

∫ ∞

0

( ẇ+,t

w+,t

)2
dt

)
− w2

,0 exp

(
−2λ

∫ ∞

0

( ẇ−,t
w−,t

)2
dt

)]
. (25)

Now, α±,∞ < w±,0 ≤ 2α, where α = max(∥u0∥∞, ∥v0∥∞) stood for the initialisation scale. Hence, |θ̃0| < α2.

Therefore, we just proved

Corollary 2. For λ > 0, if the balancedness ∆t remains strictly positive during training (i.e. ∆t ̸= 0 for
t ∈ [0,+∞]), then the perturbed initialisation satisfies |θ̃0| < α2 and

∆∞ = ∆0 ⊙ exp
(
− λ

∫ ∞

0

( ẇ+,t

w+,t

)2
+
( ẇ−,t
w−,t

)2
dt
)
.

Importantly, ∆∞ < ∆0.

C.5 Behaviour of ∆∞ for Small Values of λ

Since a precise asymptotic result for small λ is technically difficult, in this section we focus on giving some
qualitative results. For λ > 0, recall that our iterates follow

λẅ
(λ)
±,t + ẇ

(λ)
±,t ±∇L(θ(λ)t )⊙ w

(λ)
±,t = 0,

where we explicitly highlight the dependency on λ. Therefore, we have

ẇ
(λ)
±,t

w
(λ)
±,t

= ∓∇L(θ(λ)t )− λ
ẅ

(λ)
±,t

w±,t

and ( ẇ(λ)
±,t

w
(λ)
±,t

)2
= ∇L(θ(λ)t )2 + λ2

( ẅ(λ)
±,t

w±,t

)2
± 2λL(θ(λ)t )

( ẅ(λ)
±,t

w±,t

)
.

Informally, we expect (t 7→ ∇L(θ(λ)t ))0<λ≤1 ∈ L2(0,+∞) and (t 7→ λ
ẅ

(λ)
±,t

w±,t
)λ −→

λ→0
0 in L2-norm (see Theorem 5.1

in Attouch et al. (2000)). Hence, we get

∫ ∞

0

( ẇ(λ)
±,t

w
(λ)
±,t

)2
∼
λ→0

∫ ∞

0

∇L(θ(λ)t )2dt

and

∆∞ ≈
λ→0

∆0 exp
(
− 2λ

∫ ∞

0

∇L(θ(λ)s )2ds
)
.



Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks

D Discrete-Time Results

In this section, we cover the proofs of our discrete-time results from Section 4. We first recall the SMGD
recursion (13) with the w±-parametrisation from Appendix B. Initialised at w±,0 = w±,1 ∈ Rd, for k ≥ 1, the
iterates follow

w±,k+1 = w±,k ∓ γ∇LBk
(θk)⊙ w±,k + β(w±,k − w±,k−1). (26)

In what follows, we will adapt our continuous-time proof technique to the discrete case and identify a quantity
which follows a momentum mirror descent with time-varying potentials. Our proofs closely follow the proof
techniques from (Even et al., 2023) which considers SGD without momentum.

D.1 Proof of Lemma 2, Theorem 2 and Corollary 3

We start by recalling the main-paper results. The first lemma introduces two convergent series which will appear
in our main result.

Lemma 2. The following two sums S+ and S− converge to finite vectors:

S± =
1

1− β

∞∑
k=1

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
,

where r(z) = (z − 1)− ln(|z|) for z ̸= 0.

The proof of the lemma can be found in the proof of the following main theorem.

Theorem 2. The solution θSMGD of SMGD (9) interpolates the dataset and satisfies the following implicit
regularisation:

θSMGD = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0).

In the above expression, Dψ∆∞
denotes the Bregman divergence with potential ψ∆∞ , where the asymptotic

balancedness equals
∆∞ = ∆0 ⊙ exp

(
− (S+ + S−)

)
and θ̃0 = 1

4 (w
2
+,0 ⊙ exp(−2S+))− w2

−,0 ⊙ exp(−2S−)) denotes a perturbed initialisation term.

Proving Convergence towards an Interpolator. By Assumption 3, we have that the iterates w±,k
converge towards limiting weights w±,∞ and that the predictors converge towards a vector θMGF. Taking the
limit in Equation (26), we get that limk→∞ ∇LBk

(θk) ⊙ w±,k = 0. By Assumption 4, w±,∞ have non-zero
coordinates. Therefore, limk→∞ ∇LBk

(θk) = 0. For any fixed batch B ⊂ {1, · · · , n}, the sampling with or without
replacement is such that (almost surely) the set Mk := {k ≥ 0,Bk = B} is infinite. Hence, by continuity of
∇LB, limk→∞,k∈Mk

∇LB(θk) = ∇LB(θSMGD). Therefore, for all fixed batches B, ∇LB(θSMGD) = 0 and hence θSMGD

interpolates the dataset.

From here on now, for ease of notation, we do the proof for deterministic MGD. The proof for stochastic MGD is
exactly the same after replacing ∇L(θk) with ∇LBk

(θk).

Deriving the Momentum Mirror Descent. Recall that the set of pairs (γ, β) such that there exists k where
w±,k = 0 is negligible in R2. We can hence assume that the iterates are never exactly zero, and we consider the
logarithmic reparametrisation of the iterates w±,k as

g±,k =

{
ln(w±,k), if w±,k > 0,

ln(|w±,k|) + iπ, if w±,k < 0.

This way we have that that w±,k = exp(g±,k) for all k. Equation (26) then becomes

exp(g±,k+1) = exp(g±,k)∓ γ∇L(θk)⊙ exp(g±,k) + β(exp(g±,k)− exp(g±,k−1)).



Hristo Papazov∗, Scott Pesme∗, Nicolas Flammarion

Dividing by exp(g±,k) yields

exp(g±,k+1 − g±,k) = 1∓ γ∇L(θk) + β(1− exp(−(g±,k − g±,k−1)).

Now, for k ≥ 1, let δ±,k = g±,k − g±,k−1 so that we can more compactly write the above recurrence as

exp(δ±,k+1) = 1∓ γ∇L(θk) + β(1− exp(−δ±,k)).

The trick, inspired by Even et al. (2023), is to consider the function q(z) = exp(z)− (1+z) for z ∈ C. Importantly,
note that q(z) ≥ 0 for z ∈ R. Using this function, we can now rewrite the recurrence as

δ±,k+1 + q(δ±,k+1) = ∓γ∇L(θk) + β(δ±,k − q(−δ±,k)).

Setting the residues Q±,k := q(δ±,k+1) + βq(−δ±,k) leads to

δ±,k+1 = βδ±,k ∓ γ∇L(θk)−Q±,k.

This can be seen as a first-order recurrence relation with variable coefficients. For β = 0 we exactly recover the
analysis from Even et al. (2023). For β > 0, since δ±,1 = 0, for m ≥ 1, we can expand the relation as

δ±,m+1 = −
m∑
k=1

βm−k [±γ∇L(θk) +Q±,k] .

Summing over m, we now get for N ≥ 1 the following expression:

g±,N+1 − g±,1 =

N∑
m=1

δ±,m+1

= −
N∑
m=1

m∑
k=1

βm−k [±γ∇L(θk) +Q±,k]

Finally, taking the exponential for N ≥ 1, we obtain

w±,N+1 = w±,0 exp

(
−

N∑
m=1

m∑
k=1

βm−k [±γ∇L(θk) +Q±,k]

)

= w±,0 exp

(
±

N∑
m=1

m∑
k=1

βm−kQ±,k

)
exp

(
∓γ

N∑
m=1

m∑
k=1

βm−k∇L(θk)
)

= w±,0 exp

(
− 1

1− β

N∑
m=1

(1− βN+1−m)Q±,m

)
exp

(
∓ γ

1− β

N∑
m=1

(1− βN+1−m)∇L(θm)

)
,

where the last equality is obtained by changing the order of summation. Following our continuous-time approach,
for N ≥ 2, we define α±,N+1 as

α±,N+1 := w±,0 exp

(
±

N∑
m=1

m∑
k=1

βm−kQ±,k

)

= w±,0 exp

(
− 1

1− β

N∑
m=1

(1− βN+1−m)Q±,m

)
.

(27)

We can now write the iterates w±,k as

w±,N+1 = α±,N+1 exp
(
∓ γ

N∑
m=1

m∑
k=1

βm−k∇L(θk)
)
.
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Thus, the regression parameter θN becomes

θN+1 =
1

4
(w2

+,N+1 − w2
−,N+1)

=
1

4
α2
+,N+1 exp

(
− 2γ

N∑
m=1

m∑
k=1

βm−k∇L(θk)
)
− 1

4
α2
−,N+1 exp

(
2γ

N∑
m=1

m∑
k=1

βm−k∇L(θk)
)

=
1

2
∆N+1 sinh

(
−2γ

N∑
m=1

m∑
k=1

βm−k∇L(θk) + arcsinh

(
α2
+,N+1 − α2

−,N+1

2∆N+1

))
,

where we recall that ∆N = |w+,Nw−,N | = |α+,Nα−,N |. Hence, similar to the continuous case,

1

2
arcsinh

(
2θN+1

∆N+1

)
− 1

2
arcsinh

(
α2
+,N+1 − α2

−,N+1

2∆N+1

)
= −γ

N∑
m=1

m∑
k=1

βm−k∇L(θk).

For N ≥ 1, the above identity becomes exactly

∇ΦN+1(θN+1) = −γ
N∑
m=1

m∑
k=1

βm−k∇L(θk), (28)

where the time-varying potential ΦN : Rd → R is defined as

ΦN (θ) =
1

4

d∑
i=1

(
2θi arcsinh

(
2θi
∆N,i

)
−
√
4θ2i +∆2

N,i +∆N,i

)
+ ⟨ϕN , θ⟩

= ψ∆N
(θ) + ⟨ϕN , θ⟩,

where ϕN = 1
2 arcsinh

(
α2

+,N−α2
−,N

2∆N

)
and ψ∆N

is the hyperbolic entropy defined in Equation (6). Notice that with

this definition we arrive at the following time-varying momentum mirror descent for N ≥ 1:

∇ΦN+1(θN+1) = ∇ΦN (θN )− γ∇L(θN ) + β(∇ΦN (θN )−∇ΦN−1(θN−1)). (29)

Convergent Quantities. From Lemma 7, we have that α±,N must converge and that the limiting vectors α±,∞
have non-zero coordinates. Therefore, the series

∑∞
m=1

∑m
k=1 β

m−kQ±,k are convergent and their terms must
hence converge to zero:

∑m
k=1 β

m−kQ±,k −→
m→∞

0. Therefore,

α±,N → α±,∞ = w±,0 exp

(
− 1

1− β

∞∑
m=1

Q±,m

)
.

We now develop the formulas for Q±,m in order to arrive at the sums S± from Lemma 2. Recall that for m ≥ 1,
Q±,m = q(δ±,m+1) + βq(−δ±,m) and δ±,1 = q(δ±,1) = 0. Therefore,

∞∑
m=1

Q±,m =

∞∑
m=1

q(δ±,m+1) + βq(−δ±,m)

=

∞∑
m=1

q(δ±,m+1) + βq(−δ±,m+1).

Since δ±,m+1 = g±,m+1 − g±,m, we have

δ±,m+1 =

ln
(
w±,m+1

w±,m

)
if w±,m+1 and w±,m have the same sign,

ln
(∣∣∣w±,m+1

w±,m

∣∣∣)+ sgn(w±,m)iπ if they have different signs.
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It remains to notice that since q(z) = exp(z)− (1 + z), we get that

q(ln(z)) = (z − 1)− ln(z) for z ∈ R>0,

q(ln(|z|)± iπ) = (z − 1)− (ln(|z|)± iπ) for z ∈ R<0.

Therefore letting r(z) = (z − 1)− ln(|z|) as in Lemma 2, we get

q(δ±,m+1) = r
(w±,m+1

w±,m

)
− ξ±,m sgn(w±,m)iπ

q(−δ±,m+1) = r
( w±,m
w±,m+1

)
+ ξ±,m sgn(w±,m)iπ,

where ξ±,m = 0 if sgn(w±,m+1) = sgn(w±,m) and 1 otherwise. This leads to

1

1− β

∞∑
m=1

Q±,m =
1

1− β

∞∑
m=1

[
r
(w±,m+1

w±,m

)
+ βr

( w±,m
w±,m+1

)]
−

∞∑
m=1

ξ±,m sgn(w±,m)iπ

= S± −
∞∑
m=1

ξ±,m sgn(w±,m)iπ <∞.

The last equality is due to the definition of S± from Lemma 2, and the last inequality is due to the summability
of (Q±,m)m. This therefore proves lemma Lemma 2. Now notice that

α2
±,∞ = w2

±,0 exp (−2S±) .

Since ∆∞ = |α+,∞α−,∞|, we finally get that

∆∞ = ∆0 ⊙ exp
(
− (S+ + S−)

)
.

Implicit Regularisation Problem. Notice that

∇ΦN+1(θN+1) = −γ
N∑
m=1

m∑
k=1

βm−k∇L(θk) ∈ span(x1, · · · , xn).

Let Φ∞(θ) := ψ∆∞(θ) + ⟨ϕ∞, θ⟩ and consider

∇Φ∞(θMGD) = (∇Φ∞(θMGD)−∇Φ∞(θN )) + (∇Φ∞(θN )−∇ΦN (θN )) +∇ΦN (θN ).

The first two terms converge to 0: the first due to the convergence θN → θMGD and the second due to the uniform
convergence of ∇ΦN to ∇Φ∞ on compact sets. The last term is in span(x1, · · · , xn) for all N . Therefore, we get
that ∇Φ∞(θ∞) ∈ span(x1, · · · , xn), and following the exact same proof as in the continuous-time framework, we
finally get that

θMGD = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0)

where

θ̃0 =
α2
+,∞ − α2

−,∞
4

=
1

4

(
w2

+,0 ⊙ exp (−2S+)− w2
−,0 ⊙ exp (−2S−)

)
.

We recall and prove the following corollary.

Corollary 3. For γ, β > 0, if the iterates w±,k = (uk ± vk) do not change sign during training, then |θ̃0| < α2

and ∆∞ < ∆0.

Proof. The corollary follows from the fact that if the iterates w±,k do not change sign, then since r(z) ≥ 0 for

z > 0, we get that S± > 0 and ∆∞ < ∆0. Furthermore, |θ̃0| < max(w2
+,0, w

2
−,0)/4 ≤ α2
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D.2 Link to the Continuous-Time Result.

In this subsection we link our continuous results with the discrete when the iterates do not cross zero. Indeed, at
first sight, the discrete-time expression for ∆∞ might seem quite different from its continuous-time counterpart:

∆MGD
∞ = ∆0 exp

(
− 1

1− β

∞∑
k=1

[
r

(
w+,k+1

w+,k

)
+ r

(
w−,k+1

w−,k

)]
+ β

[
r

(
w+,k

w+,k+1

)
+ r

(
w−,k

w−,k+1

)])

∆MGF
∞ = ∆0 exp

(
−λ

∫ ∞

0

(
ẇ+,t

w+,t

)2

+

(
ẇ−,t

w−,t

)2

dt

)
.

However, upon closer inspection, by letting the discretisation step ε =
√
λγ = γ

(1−β) from Proposition 1 go to 0,

we can recover the continuous-time result. Indeed, as ε→ 0, we expect successive iterates w±,k to be close and
hence w±,k+1/w±,k ≈ 1. Now, since r(z) ∼z→1 (z − 1)2/2, we roughly have

r
(w±,k+1

w±,k

)
≈ 1

2

(w±,k+1 − w±,k
w±,k

)2
and

r
( w±,k
w±,k+1

)
≈ 1

2

(w±,k+1 − w±,k
w±,k+1

)2 ≈ 1

2

(w±,k+1 − w±,k
w±,k

)2
Putting the approximations together:

1

1− β

∑
k

[
r
(w±,k+1

w±,k

)
+ βr

( w±,k
w±,k+1

)]
≈ 1

2

ε(1 + β)

1− β

∑
k

(
w±,k+1 − w±,k

ε

)2
1

(w±,k)2
· ε

≈ 1 + β

2

γ

(1− β)2

∫ ∞

0

(
ẇ±,t
w±,t

)2

dt

=
1 + β

2
λ

∫ ∞

0

(
ẇ±,t
w±,t

)2

dt.

Notice that in order for λ to remain constant and ε to go to 0, we must both have γ → 0 and β → 1. Hence,
(1 + β)/2 → 1, and we recover the continuous-time expression for the balancedness.

However, note that when the iterates cross zero it is unclear to the authors how the continuous formula and its
discrete counterpart compare.

Another Safe-Check Computation. Recall that MGD with stepsize γ and momentum parameter β cor-
responds to the discretisation of MGF with λ = γ/(1 − β)2 and discretisation step ε =

√
λγ. To check the

consistency between the discrete time equations and continuous time equations, we look at the value of exp(− t−s
λ )

and times ’t = mε’ and ’s = kε’:

exp(− t− s

λ
) = exp(− (m− k)ε

λ
)

= exp(−(m− k)(1− β))

= [exp(β − 1)]m−k

∼β→1 β
m−k.

This small computation serves as a safe-check, affirming the correspondence between the continuous-time analysis
expression exp(− t−s

λ ) and its discrete-time counterpart βm−k.

E Technical Lemmas

In this section we present various technical lemmas which allow us to prove our main results. For ∆ ∈ Rd>0, we
recall the definition of the hyperbolic entropy function (Ghai et al., 2020) ψ∆ : Rd → R at scale ∆:

ψ∆(θ) =
1

4

d∑
i=1

(
2θi arcsinh

(
2θi
∆i

)
−
√
4θ2i +∆2

i +∆i

)
.
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The following lemma shows that the potential behaves as the ℓ1-norm as ∆ approaches 0.

Lemma 4. For θ ∈ Rd the following asymptotic equivalence holds:

ψ∆(θ) ∼
∆→0

1

4

d∑
i=1

ln

(
1

∆i

)
|θi|.

Proof. The lemma easily follows from the asymptotic convergence

arcsinh(x) ∼
|x|→∞

sgn(x) ln |x|.

The following lemma is a classical result which gives a closed-form expression to the solution of a first order ODE.

Lemma 5. Let f : R≥0 → Rd be a differentiable function and let g : R≥0 → Rd be a continuous function such
that for some λ ̸= 0,

λḟ + f + g = 0, ∀t ∈ R≥0.

Then,

f(t) = f(0)e−
t
λ − 1

λ

∫ t

0

g(s)e−
(t−s)

λ ds.

Moreover, we have the following formula for the integral of f(t):∫ T

0

f(t)dt = λf(0)(1− e−
T
λ )−

∫ T

0

g(t)(1− e−
(T−t)

λ )dt.

Proof. If we integrate the identity d
dt

[
f(t)et/λ

]
= − 1

λg(t)e
t/λ, we get that

f(t) = f(0)e−
t
λ − 1

λ

∫ t

0

g(s)e−
(t−s)

λ ds.

As for the second part of the lemma, notice that∫ T

0

f(t)dt =

∫ T

0

[
f(0)e−

t
λ − 1

λ

∫ t

0

g(s)e−
(t−s)

λ ds

]
dt.

Hence, using Fubini, we get∫ T

0

∫ t

0

g(s)e−
(t−s)

λ dsdt =

∫ T

0

∫ T

0

g(s)1s≤t(s, t)e
− (t−s)

λ dsdt

=

∫ T

0

g(s)

∫ T

0

1s≤t(s, t)e
− (t−s)

λ dtds

=

∫ T

0

g(s)

∫ T

s

e−
(t−s)

λ dtds

=

∫ T

0

g(s)λ(1− e−
(T−s)

λ )ds,

which concludes the proof of the lemma.

The following lemma gives various properties on integrability and convergence of the solution f of the aforemen-
tioned ODE.

Lemma 6. Let f : R≥0 → Rd be a differentiable function such that f(0) = 0 and let g : R≥0 → Rd be a continuous
function such that for some λ ̸= 0,

λḟ + f + g = 0, ∀t ∈ R≥0.

If g ∈ L∞(0,+∞), then f ∈ L∞(0,+∞) and ∥f∥∞ ≤ ∥g∥∞. Moreover, if g ∈ L1(0,+∞), then the following hold:
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• f ∈ L1(0,+∞) and
∫ t
0
|f(s)|ds ≤

∫ t
0
|g(s)|ds, ∀t ∈ [0,+∞];

• lim
t→∞

f(t) = 0;

•
∫ ∞

0

f = −
∫ ∞

0

g.

Proof. First, assume g ∈ L∞(0,∞). From Lemma 5, we have that f(t) = − 1
λ

∫ t
0
g(s)e−

(t−s)
λ ds. Hence,

|f(t)| ≤ ∥g∥∞
λ

∫ t

0

e−
(t−s)

λ ds

= ∥g∥∞(1− e−t/λ) ≤ ∥g∥∞,

which proves the first assertion.

Second, assume g ∈ L1(0,∞). Then, |f(t)| ≤ 1
λ

∫ t
0
|g(s)|e− (t−s)

λ ds. Therefore,∫ t

0

|f(s)|ds ≤
∫ t

0

|g(s)|(1− e−
(t−s)

λ )ds

≤
∫ t

0

|g(s)|ds ≤ ∥g∥L1 .

Moving on, we will show that limt→∞ f(t) = 0. Recall that f(t) = − 1
λ

∫ t
0
g(s)e−

(t−s)
λ ds. Then,∣∣∣∣∫ t

0

g(s)e−
(t−s)

λ ds

∣∣∣∣ =
∣∣∣∣∣
∫ t/2

0

g(s)e−
(t−s)

λ ds+

∫ t

t/2

g(s)e−
(t−s)

λ ds

∣∣∣∣∣
≤ e−

t
2λ

∫ t/2

0

|g(s)|ds+
∫ ∞

t/2

|g(s)|ds

t→∞−−−→ 0.

Finally, notice that

lim
t→∞

[
λ

∫ t

0

ḟ +

∫ t

0

(f + g)

]
= 0 ⇐⇒

λ lim
t→∞

f(t) +

∫ ∞

0

(f + g) = 0 ⇐⇒∫ ∞

0

f +

∫ ∞

0

g = 0,

where we used that limt→∞ f(t) = 0 and the linearity of the Lebesgue integral.

With the help of Lemma 5 and Lemma 6, we can finally prove Proposition 3, which considers ODE (4) and
establishes the positivity of the balancedness for small λ.

Proposition 3. For λ ≤ n
∥y∥2

2
· (mini≤d∆0,i), the balancedness ∆t never vanishes: ∆t ̸= 0, ∀t ∈ [0,+∞].

Proof. We consider MGF(λ) with the diagonal-linear-network loss F (w) = L(u⊙ v), where w = (u, v). From the
energy of the system, defined in Equation (14) as Et = F (wt) +

λ
2 ∥ẇt∥22 with derivative Ėt = −∥ẇt∥22, we get that

L(θt) =
∥y∥22
2n

− λ

2
∥ẇt∥22 −

∫ t

0

∥ẇs∥22ds.

Hence, since the LHS of the above equation is nonnegative, we get∫ ∞

0

∥ẇt∥2dt ≤
∥y∥2
2n

.
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Therefore, ∫ ∞

0

|u̇2t − v̇2t |dt <
∥y∥2
2n

1.

Consequently, u̇2t − v̇2t ∈ L1(0,∞). Now, notice that from ODE (4), we obtain

λ(ütut − v̈tvt) + (u̇tut − v̇tvt) = 0 ⇐⇒

λ
d

dt
(u̇tut − v̇tvt) + (u̇tut − v̇tvt)− λ(u̇2t − v̇2t ) = 0.

Applying Lemma 5 yields

u̇tut − v̇tvt =

∫ t

0

(u̇2s − v̇2s)e
− (t−s)

λ ds

and

u2t − v2t = ∆0 + 2λ

∫ t

0

(u̇2s − v̇2s)(1− e−
(t−s)

λ )ds. (30)

Applying Lemma 6 allows us to conclude that for every t ∈ [0,+∞],

∆t ≥ ∆0 − 2λ

∫ t

0

|u̇2s − v̇2s |ds

> ∆0 −
λ∥y∥22
n

1 ≥ 0,

where the last inequality is due to the inequality assumption over λ.

Our final technical lemma helps with the proof of Theorem 2. The definition of the quantities Q±,m can be found
in the proof of this theorem.

Lemma 7. The quantities α±,N defined in eq. (27):

α±,N+1 = α exp

(
− 1

1− β

N∑
m=1

(1− βN+1−m)Q±,m

)
,

converge as N → ∞ to vectors α±,∞ with non-zero coordinates.

Proof. From Assumption 3 and Assumption 4, we have that the iterates w±,N converge towards vectors w±,∞
such that ∆∞ = |w+,∞⊙w−,∞| has non-zero coordinates. This means that there exists N0 > 0 such that w±,N do
not change sign for N ≥ N0. Consequently, the imaginary parts of g±,N are constant (equal to 0 or π depending
on the sign of w±,∞) for N ≥ N0, and δ±,N ∈ R for N ≥ N0. This finally means that Q±,N ≥ 0 for N ≥ N0 and

N∑
m=1

(1− βN+1−m)Q±,m =

N0∑
m=1

(1− βN+1−m)Q±,m +

N∑
m=N0+1

(1− βN+1−m)Q±,m

The first term converges to
∑N0

m=1Q±,m as N → ∞. The second term is increasing because Q±,N are positive
for N ≥ N0 and (1− βN+1−m) is increasing. Therefore, the second term also converges to a finite value since
otherwise α±,∞ = 0, which contradicts ∆∞ = |α+,∞α−,∞| ≠ 0.

F Additional Experiments

In this section of the appendix, we clarify experimental details and discuss additional experiments.
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F.1 MGF: A Good Continuous Surrogate

Most of our experiments deal with 2-layer diagonal networks, but before we constrain ourselves to that tractable
setting, we present a couple of experiments on more general architectures. These experiments highlight our
observation from Section 2 that MGF(λ) serves as a good continuous proxy for MGD(γ, β) even for complicated
non-convex losses F and large step sizes γ. We provide evidence for that conclusion by showing that the single
parameter λ = γ/(1− β)2 controls the generalisation performance of models trained with MGD(γ, β).

Teacher-Student Fully Connected Network. We detail the experimental setting which leads to Figure 2.
We consider a teacher-student setup where the teacher is a one-hidden-layer fully-connected ReLU network with
5 hidden neurons and the student is a one-hidden-layer fully-connected ReLU network with 20 hidden neurons.
We randomly generate 15 inputs xi ∈ R2 according to a standard multivariate normal distribution. Each yi
corresponds to the output by the teacher network on input xi. The student is trained using momentum gradient
descent with a square loss. Figure 2 corresponds to the test loss after the student reaches 10−5 training error.
Each grid point corresponds to the same data set and initialisation of the student network. We observe that the
quantity λ = γ

(1−β)2 aligns well with the level lines of the test loss as expected from Proposition 1.

Deep Linear Network. The network used for Figure 6 contains 5 layers with widths (30, 60, 120, 60, 1) and
was trained for 1000 epochs for each pair of momentum parameter β and step size γ. Each network weight was
randomly initialised according to N (0, 0.12) with fixed randomness for each (γ, β)-trial. The training data was

chosen as follows: (xi)
n
i=1

i.i.d.∼ N (µ1, σ2Id) and yi = ⟨xi, θ⋆s⟩ for i ∈ [n] where θ⋆s is s-sparse with nonzero entries
equal to 1/

√
s, where (n, d, s) = (20, 30, 5) and (µ, σ) = (1, 1). We show results averaged over 5 replications.

Figure 6: Test and train loss of a fully connected deep linear network trained with MGD(γ, β) in a noiseless sparse
overparametrised regression setting. The test loss appears considerably correlated with the intrinsic parameter
λ = γ/(1− β)2, evincing that MGF(λ) approximates MGD(γ, β) sufficiently well even on complex architectures.

2-Layer Diagonal Linear Network. The plots from Figure 7 were obtained for a 2-layer diagonal linear
network trained in the noiseless sparse overparametrised regression setting described above. The first network
layer was initialised with the uniform initialisation α1, where α = 0.01, and the weights of the second layer were
set to 0. The momentum gradient flow evolution of the weights was simulated with the default version of the
ODE solver scipy.integrate.odeint.

F.2 Experiments with Diagonal Linear Networks

Having seen empirical proof that MGF(λ) approximates well the optimisation trajectory of MGD(γ, β) on
complicated models, we proceed with experiments that illustrate the conclusions of our results for 2-layer diagonal
linear networks. In particular, we provide experimental evidence that both in the continuous and discrete-time
cases, the recovered interpolators by MGD and MGF satisfy

θMGF/MGD = argmin
θ⋆∈S

Dψ∆∞
(θ⋆, θ̃0) ≈ argmin

θ⋆∈S
ψ∆∞(θ⋆),
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Figure 7: Left : Decimal logarithm of the test loss of a 2-layer diagonal linear network trained with MGD(γ, β)
for 1 million epochs. Right : Decimal logarithm of the test loss of a 2-layer diagonal linear whose weights evolved
according to MGF(λ) – where λ = γ/(1− β)2 – and converged to an interpolator of the training dataset. We
observe an almost one-to-one correspondence in terms of generalisation capacity, which demonstrates that MGF(λ)
serves as a suitable continuous surrogate for MGD(γ, β) in the diagonal linear setting.

as we explain underneath Theorem 1, Theorem 2, and in Appendix C.3.3. Indeed, we observe that the perturbation
term θ̃0 can be safely ignored even without the assumption of strictly positive balancedness. The asymptotic
balancedness ∆∞ then uniquely controls the properties of the recovered solution. We now specify our experimental
setting.

Experimental Details. We work in the noiseless sparse overparametrised regression setting with uncentered

data. More precisely, we let (xi)
n
i=1

i.i.d.∼ N (µ1, σ2Id) and yi = ⟨xi, θ⋆s⟩ for i ∈ [n] where θ⋆s is s-sparse with nonzero
entries equal to 1/

√
s. We train a 2-layer diagonal linear network with (M)GD and (M)GF with the uniform

initialisation u0 = α1, where α = 0.01 and v0 = 0. In order to simulate gradient flow or momentum gradient flow
on the network weights, we use the vanilla version of the ODE solver scipy.integrate.odeint. For most of the
incoming plots, we have fixed (n, d, s, σ) = (20, 30, 5, 1) and we let µ ∈ {0, 0.5, 1, 1.5}. In what follows, all plots
show results averaged over 5 replications.

F.2.1 Continuous-Time Plots

We first present a set of 3 continuous-time plots (Figure 8) for the setting where the input data follows a Gaussian
distribution N (µ1, Id) with µ = 1.

Experimental Setup. For a sampled dataset (X, y), we train our diagonal network with MGF(λ), λ ∈ [0, 1],
and initialisation (u0, v0) = (α · 1, 0) until convergence to an interpolator 7 θMGF. During the training of MGF(λ),
we also take note of whether the balancedness ∆t remains strictly positive at all times, thereby checking the
explanatory range of Section 3.3. Having completed the MGF training, we plot the Test Loss of θMGF, the
ℓ2-Norm of ∆∞, and the ℓ1-Norm of θMGF in order to visualise the gain in generalisation performance.

Insignificance of θ̃0. Now, recall from Theorem 1 that θMGF = argminθ⋆∈S Dψ∆∞
(θ⋆, θ̃0) and that for ∥θ̃0∥∞ ≪

∥θMGF∥∞, Dψ∆∞
(θ⋆, θ̃0) ≈ ψ∆∞(θ⋆). We proved that for small values of λ, the balancedness remains strictly

positive at all times, which allowed us to show that ∥θ̃0∥∞ < α2. We conjecture that θMGF ≈ argminθ⋆∈S ψ∆∞(θ⋆)
continues to hold for larger values of λ. We experimentally test this claim by measuring the precise distance
between θMGF and θGF∆∞

= argminθ⋆∈S ψ∆∞(θ⋆). Indeed, we initialise a gradient flow with initial balancedness
equal to ∆∞ and such that θ0 = 0, which converges to the predictor θGF∆∞

as discussed in Section 3.1. Hence,
we can calculate the Normalised Distance between θMGF and θGF∆∞

equal to ∥θMGF − θGF∆∞
∥2/∥θGF∆∞

∥2, and we

7We know that θMGF interpolates the dataset (X, y) because we also record the Train Loss (θMGF), which falls under 10−20.
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obtain that ∥θMGF − θGF∆∞
∥2/∥θGF∆∞

∥2 < 0.01 for λ ∈ (0, 1).

Figure 8: Continuous-time experiments on uncentered data with mean µ = 1. Here, θMGF denotes the interpolator
recovered by MGF(λ) and ∆∞ stands for the balancedness at infinity for MGF(λ). We observe that the test loss
and sparsity of θMGF correlate with the magnitude of ∆∞ as predicted by Theorem 1.

Figure 9: We observe that for uncentered data the magnitude of the balancedness at infinity ∆∞ correlates with
the test loss of the interpolator selected by MGF(λ). However, this relationship breaks for centered data.

Insights from Continuous-Time Experiments. First, we observe that no matter the mean of the data
distribution8 or the size of λ ∈ (0, 1), the normalised distance between θMGF and θGF∆∞

is always upper-bounded by
0.01. Hence, we can empirically confirm our conjecture from Theorem 1 that θMGF ≈ θGF∆∞

for larger λ when the
balancedness changes sign. Second, we see that regardless of the mean of the dataset, the balancedness at infinity
(i.e., the effective initialisation ∆∞) controls the generalisation behavior of the recovered interpolator. We can
explain this observation again through the approximate equivalence θMGF ≈ argminθ⋆∈S ψ∆∞(θ⋆).

8We performed the continuous-time experiments depicted in Figure 9 for data with mean µ = 0, 0.5, 1, 1.5.
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The Effect of the Data Mean. In Figure 9, we summarise our empirical results for data with various means.
Notice that there exists a difference between the generalisation behavior for centered and uncentered data. Indeed,
for centered data (top left), the key quantity λ has little impact on the sparsity of the recovered solution. This
circumstance is reminiscent of the observations from (Nacson et al., 2022) and (Even et al., 2023). However, for
uncentered data, we observe an interval IDx

= (0, λmax) (which depends on the data distribution Dx) for which
MGF with λ ∈ IDx

outperforms GF in terms of generalisation. Furthermore, there appears to exist a constant
λ⋆Dx

∈ IDx (roughly corresponding to the minimum magnitude of ∆∞) which brings about the most improvement
compared to gradient flow. We note that the following tendency seems to hold empirically:

lim
|µ|→+∞

λ⋆Dx
= 0.

F.2.2 Discrete-Time Plots

For the sake of brevity9, we only present a single set of plots for the discrete-time noiseless sparse recovery given
in Figure 4. Our input data follows a unit-mean Gaussian distribution N (1, Id).

Experimental Setup. For a sampled dataset (X, y) and hyperparameter pair (β, γ), we train our 2-layer
diagonal linear network with MGD(γ, β) initialised at (u0, v0) = (α1, 0) for 1 million epochs (which suffices for
convergence10). During the MGD(γ, β) training, we also take note of whether the iterates w±,k change sign or
not thereby checking the explanatory range of Corollary 3. Having completed the MGD training, we plot the
Test Loss of θMGD, the ℓ2-Norm of ∆∞, and the ℓ1-Norm of θMGD in order to visualise the gain in generalisation
performance.

Insignificance of θ̃0. Recall from Theorem 2 that θMGD = argminθ⋆∈S Dψ∆∞
(θ⋆, θ̃0). Again, we want to

characterise the recovered interpolator as θMGD ≈ argminθ⋆∈S ψ∆∞(θ⋆). In order to verify empirically that the
effect of the perturbation term is negligible, we follow the same strategy as in the continuous-time case. We
initialise a gradient flow with initial balancedness equal to ∆∞ and θ0 = 0, which converges to the predictor θGF∆∞
as discussed in Section 3.1. Hence, we can calculate the Normalised Distance between θMGD and θGF∆∞

equal to
∥θMGDγ,β,α − θGF∆∞

∥2/∥θGF∆∞
∥2, and we find that ∥θMGDγ,β,α − θGF∆∞

∥2/∥θGF∆∞
∥2 < 0.01 for all pairs (γ, β) in Figure 4. This

experimentally shows that θMGD ≈ argminθ⋆∈S ψ∆∞(θ⋆) and that the asymptotic balancedess is the key quantity
which predicts the recovered solution.

Insights from Discrete-Time Experiments. As predicted by Theorem 2, a more balanced solution (center
plot) leads to a solution with a lower ℓ1-norm (right plot), which in turn translates to better generalisation (left
plot). Finally, as proven in Corollary 3, the trajectories for which the iterates do not cross zero satisfy ∆∞ < ∆0,
where ∆0 (approximately) corresponds to the asymptotic balancedness for the pair (β, γ) = (0, 10−3) in the
bottom left corner of the center plot. Clearly, the pairs (β, γ) for which w±,k do not change sign lead to better
generalisation than the pair (0, 10−3). Again, we note that for centered data the story changes, and we lose the
clear correspondence between small ∥∆∞∥2 and small ∥θMGD∥1.

9We performed discrete-time experiments for data with means µ = 0, 0.5, 1, 1.5.
10Again, we record the Train Loss (θMGDγ,βα), which falls under 10−8.
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