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Abstract

In this paper we fully describe the trajectory of gradient flow over 2-layer diagonal
linear networks for the regression setting in the limit of vanishing initialisation. We
show that the limiting flow successively jumps from a saddle of the training loss to
another until reaching the minimum ℓ1-norm solution. We explicitly characterise
the visited saddles as well as the jump times through a recursive algorithm remi-
niscent of the LARS algorithm used for computing the Lasso path. Starting from
the zero vector, coordinates are successively activated until the minimum ℓ1-norm
solution is recovered, revealing an incremental learning. Our proof leverages a
convenient arc-length time-reparametrisation which enables to keep track of the
transitions between the jumps. Our analysis requires negligible assumptions on the
data, applies to both under and overparametrised settings and covers complex cases
where there is no monotonicity of the number of active coordinates. We provide
numerical experiments to support our findings.

1 Introduction

Strikingly simple algorithms such as gradient descent are driving forces for deep learning and have
led to remarkable empirical results. Nonetheless, understanding the performances of such methods
remains a challenging and exciting mystery: (i) their global convergence on highly non-convex losses
is far from being trivial and (ii) the fact that they lead to solutions which generalise well [53] is still
not fully understood.

To explain this second point, a major line of work has focused on the concept of implicit regularisation:
amongst the infinite space of zero-loss solutions, the optimisation process must be implicitly biased
towards solutions which have good generalisation properties for the considered real-world prediction
tasks. Many papers have therefore shown that gradient methods have the fortunate property of
asymptotically leading to solutions which have a well-behaving structure [38, 24, 16].

Aside from these results which mostly focus on characterising the asymptotic solution, a slightly
different point of view has been to try to describe the full trajectory. Indeed it has been experimentally
observed that gradient methods with small initialisations have the property of learning models of
increasing complexity across the training of neural networks [29]. This behaviour is usually referred
to as incremental learning or as a saddle-to-saddle process and describes learning curves which are
piecewise constant: the training process makes very little progress for some time, followed by a
sharp transition where a new “feature” is suddenly learned. In terms of optimisation trajectory, this
corresponds to the iterates "jumping" from a saddle of the training loss to another.

Several settings exhibiting such dynamics for small initialisation have been considered: matrix
and tensor factorisation [44, 27], simplified versions of diagonal linear networks [23, 7], linear
networks [22, 45, 26], 2-layer neural networks with orthogonal inputs [10], learning leap functions
with 2-layer neural networks [1] and matrix sensing [2, 33, 28]. However, all these results require
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Figure 1: Gradient flow (βα
t )t with small initialisation scale α over a 2-layer diagonal linear network

(for the precise experimental setting, see Appendix A). Left: Training loss across time, the learning is
piecewise constant. Middle: The magnitudes of the coordinates are plotted across time: the process
is piecewise constant. Right: In the R3 space in which the iterates evolve (the remaining coordinates
stay at 0), the iterates jump from a saddle of the training loss to another. The jumping times ti as well
as the visited saddles βi are entirely predicted by our theory.

restrictive assumptions on the data or only characterise the first jump. Obtaining a complete picture
of the saddle-to-saddle process by describing all the visited saddles and jump times is mathematically
challenging and still missing. We intend to fill this gap by considering diagonal linear networks which
are simplified neural networks that have received significant attention lately [50, 48, 25, 43, 20] as
they are ideal proxy models for gaining a deeper understanding of complex phenomenons such as
saddle-to-saddle dynamics.

1.1 Informal statement of the main result

In this paper, we provide a full description of the trajectory of gradient flow over 2-layer diagonal
linear networks in the limit of vanishing initialisation. The main result is informally presented here.
Theorem 1 (Main result, informal). In the regression setting and in the limit of vanishing initial-
isation, the trajectory of gradient flow over a 2-layer diagonal linear network converges towards
a limiting process which is piecewise constant: the iterates successively jump from a saddle of the
training loss to another, each visited saddle and jump time can recursively be computed through an
algorithm (Algorithm 1) reminiscent of the LARS algorithm for the Lasso.

The incremental learning stems from the particular structure of the saddles as they correspond to min-
imisers of the training loss with a constraint on the set of non-zero coordinates. The saddles therefore
correspond to sparse vectors which partially fit the dataset. For simple datasets, a consequence of our
main result is that the limiting trajectory successively starts from the zero vector and successively
learns the support of the sparse ground truth vector until reaching it. However, we make
minimal assumptions on the data and our analysis also holds for complex datasets. In that case,
the successive active sets are not necessarily increasing in size and coordinates can deactivate as well
as activate until reaching the minimum ℓ1-norm solution (see Figure 1 (middle) for an example of a
deactivating coordinate). The regression setting and the diagonal network architecture are introduced
in Section 2. Section 3 provides an intuitive construction of the limiting saddle-to-saddle dynamics
and presents the algorithm that characterises it. Our main result regarding the convergence of the
iterates towards this process is presented in Section 4 and further discussion is provided in Section 5.

2 Problem setup and leveraging the mirror structure

2.1 Setup

Linear regression. We study a linear regression problem with inputs (x1, . . . , xn) ∈ (Rd)n and
outputs (y1, . . . , yn) ∈ Rn. We consider the typical quadratic loss:

L(β) =
1

2n

n∑
i=1

(⟨β, xi⟩ − yi)
2 . (1)
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We make no assumption on the number of samples n nor the dimension d. The only assumption we
make on the data throughout the paper is that the inputs (x1, . . . , xn) are in general position. In order
to state this assumption, let X ∈ Rn×d be the feature matrix whose ith row is xi and let x̃j ∈ Rn be
its jth column for j ∈ [d].
Assumption 1 (General position). For any k ≤ min(n, d) and arbitrary signs σ1, . . . , σk ∈ {−1, 1},
the affine span of any k points σ1x̃j1 , . . . , σkx̃jk does not contain any element of the set {±x̃j , j ̸=
j1, . . . , jk}.
This assumption is slightly technical but is standard in the Lasso literature [47]. Note that it is
not restrictive as it is almost surely satisfied when the data is drawn from a continuous probability
distribution [47, Lemma 4]. Letting S = argminβ L(β) denote the affine space of solutions,
Assumption 1 ensures that the minimisation problem minβ⋆∈S∥β⋆∥1 has a unique minimiser which
we denote β⋆

ℓ1
and which corresponds to the minimum ℓ1-norm solution.

2-layer diagonal linear network. In an effort to understand the training dynamics of neural networks,
we consider a 2-layer diagonal linear network which corresponds to writing the regression vector β as

βw = u⊙ v where w = (u, v) ∈ R2d . (2)
This parametrisation can be interpreted as a simple neural network x 7→ ⟨u, σ(diag(v)x)⟩ where u
are the output weights, the diagonal matrix diag(v) represents the inner weights, and the activation
σ is the identity function. We refer to w = (u, v) ∈ R2d as the weights and to β := u ⊙ v ∈ Rd

as the prediction parameter. With the parametrisation (2), the loss function F over the parameters
w = (u, v) ∈ R2d is defined as:

F (w) := L(u⊙ v) =
1

2n

n∑
i=1

(⟨u⊙ v, xi⟩ − yi)
2 . (3)

Though this reparametrisation is simple, the associated optimisation problem is non-convex and
highly non-trivial training dynamics already occur. The critical points of the function F exhibit a
very particular structure, as highlighted in the following proposition proven in Appendix B.
Proposition 1. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0 and
F (wc) > minw F (w), are necessarily saddle points (i.e., not local extrema). They map to parameters
βc = uc ⊙ vc which satisfy |βc|⊙∇L(βc) = 0 and:

βc ∈ argmin
β[i]=0 for i/∈supp(βc)

L(β) (4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.

The optimisation problem in Eq. (4) states that the saddle points of the train loss F correspond to
sparse vectors that minimise the loss function L over its non-zero coordinates. This property
already shows that the saddle points possess interesting properties from a learning perspective. In the
following we loosely use the term of ‘saddle’ to refer to points βc ∈ Rd solution of Eq. (4) that are
not saddles of the convex loss function L. We adopt this terminology because they correspond to
points wc ∈ R2d that are indeed saddles of the non-convex loss F .

Gradient Flow and necessity of “accelerating” time. We minimise the loss F using gradient flow:
dwt = −∇F (wt)dt , (5)

initialised at u0 =
√
2α1 ∈ Rd

>0 with α > 0, and v0 = 0 ∈ Rd. This initialisation results in
β0 = 0 ∈ Rd independently of the chosen weight initialisation scale α. We denote βα

t := uα
t ⊙ vαt

the prediction iterates generated from the gradient flow to highlight its dependency on the initialisation
scale α1. The origin 0 ∈ R2d is a critical point of the function F and taking the initialisation α→ 0
therefore arbitrarily slows down the dynamics. In fact, it can be easily shown for any fixed time t,
that (uα

t , v
α
t ) → 0 as α → 0, indicating that the iterates are stuck at the origin. Therefore if we

restrict ourselves to a finite time analysis, there is no hope of exhibiting the observed saddle-to-saddle
behaviour. To do so, we must find an appropriate bijection t̃α in R≥0 which “accelerates” time (i.e.
t̃α(t)−→

α→0
+∞ for all t) and consider the accelerated iterates βα

t̃α(t)
which can escape the saddles.

Finding this bijection becomes very natural once the mirror structure is unveiled.
1We point out that the trajectory of βα

t exactly matches that of another common parametrisation βw :=
1
2
(w2

+ − w2
−), with initialisation w+,0 = w−,0 = α1.
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2.2 Leveraging the mirror flow structure

While the iterates (wα
t )t follow a gradient flow on the non-convex loss F , it is shown in [5] that the

iterates βα
t follow a mirror flow on the convex loss L with potential ϕα and initialisation βα

t=0 = 0:

d∇ϕα(β
α
t ) = −∇L(βα

t )dt, (6)

where ϕα is the hyperbolic entropy function [21] defined as:

ϕα(β) =
1

2

d∑
i=1

(
βiarcsinh(

βi

α2
)−

√
β2
i + α4 + α2

)
. (7)

Unveiling the mirror flow structure enables to leverage convex optimisation tools to prove convergence
of the iterates to a global minimiser β⋆

α as well as a simple proof of the implicit regularisation problem
it solves. As shown by Woodworth et al. [50], in the overparametrised setting where d > n and where
there exists an infinite number of global minima, the limit β⋆

α is the solution of the problem:

β⋆
α = argmin

yi=⟨xi,β⟩,∀i
ϕα(β). (8)

Furthermore, a simple function analysis shows that ϕα behaves as a rescaled ℓ1-norm as α goes
to 0, meaning that the recovered solution β⋆

α converges to the minimum ℓ1-norm solution β⋆
ℓ1

=
argminyi=⟨xi,β⟩∥β∥1 as α goes to 0 (see [49] for a precise rate). To bring to light the saddle-to-
saddle dynamics which occurs as we take the initialisation to 0, we make substantial use of the nice
mirror structure from Eq. (6).

Appropriate time rescaling. To understand the limiting dynamics of βα
t , it is natural to consider

the limit α→ 0 in Eq. (6). However, the potential ϕα is such that ϕα(β) ∼ ln(1/α)∥β∥1 for small
α and therefore degenerates as α → 0. Similarly, for β ̸= 0, ∥∇ϕα(β)∥→ ∞ as α→ 0. The
formulation from Eq. (6) is thus not appropriate to take the limit α→ 0. We can nonetheless obtain a
meaningful limit by considering the opportune time acceleration t̃α(t) = ln(1/α) · t and looking at
the accelerated iterates

β̃α
t := βα

t̃α(t) = βα
ln(1/α)t. (9)

Indeed, a simple chain rule leads to the “accelerated mirror flow”: d∇ϕα(β̃
α
t ) = − ln ( 1

α )∇L(β̃α
t )dt.

The accelerated iterates (β̃α
t )t follow a mirror descent with a rescaled potential:

d∇ϕ̃α(β̃
α
t ) = −∇L(β̃α

t )dt, where ϕ̃α :=
1

ln(1/α)
· ϕα, (10)

with β̃t=0 = 0 and where ϕα is defined Eq. (7). Our choice of time acceleration ensures that the
rescaled potential ϕ̃α is non-degenerate as the initialisation goes to 0 since ϕ̃α(β) ∼

α→0
∥β∥1.

3 Intuitive construction of the limiting flow and saddle-to-saddle algorithm

In this section, we aim to give a comprehensible construction of the limiting flow. We therefore
choose to provide intuition over pure rigor, and defer the full and rigorous proof to the Appendix E.
The technical crux of our analysis is to demonstrate the existence of a piecewise constant limiting
process towards which the iterates β̃α converge to. The convergence result is deferred to the following
Section 4. In this section we assume this convergence and refer to this piecewise constant limiting
process as (β̃◦

t )t. Our goal is then to determine the jump times (t1, . . . , tp) as well as the saddles
(β0, . . . , βp) which fully define this process.

To do so, it is natural to examine the limiting equation obtained when taking the limit α → 0 in
Eq. (10). We first turn to its integral form which writes:

−
∫ t

0

∇L(β̃α
s )ds = ∇ϕ̃α(β̃

α
t ). (11)
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Provided the convergence of the flow β̃α towards β̃◦, the left hand side of the previous equation
converges to −

∫ t

0
∇L(β̃◦

s )ds. For the right hand side, recall that ϕ̃α(β)
α→0∼ ∥β∥1, it is therefore

natural to expect the right hand side of Eq. (11) to converge towards an element of ∂∥β̃◦
t ∥1, where

we recall the definition of the subderivative of the ℓ1-norm as:

∂∥β̃∥1= {1} if β̃ > 0, {−1} if β̃ < 0, [−1, 1] if β̃ = 0.

The arising key equation which must satisfy the limiting process β̃◦ is then, for all t ≥ 0:

−
∫ t

0

∇L(β̃◦
s )ds ∈ ∂∥β̃◦

t ∥1. (12)

We show that this equation uniquely determines the piecewise constant process β̃◦ by imposing
the number of jumps p, the jump times as well as the saddles which are visited between the jumps.
Indeed the relation described in Eq. (12) provides 4 restrictive properties that enable to construct β̃◦.
To state them, let st = −

∫ t

0
∇L(β̃◦

s )ds and notice that it is continuous and piecewise linear since β̃◦

is piecewise constant. For each coordinate i ∈ [d], it holds that:

(K1) st[i] ∈ [−1, 1] (K2) st[i] = 1⇒ β̃◦
t [i] ≥ 0 and st[i] = −1⇒ β̃◦

t [i] ≤ 0

(K3) st[i] ∈ (−1, 1)⇒ β̃◦
t [i] = 0 (K4) β̃◦

t [i] > 0⇒ st[i] = 1 and β̃◦
t [i] < 0⇒ st[i] = −1

To understand how these conditions lead to the algorithm which determines the jump times and the
visited saddles, we present a 2-dimensional example for which we can walk through each step. The
general case then naturally follows from this simple example.

3.1 Construction of the saddle-to-saddle algorithm with an illustrative 2d example.

Let us consider n = d = 2 and data matrix X ∈ R2×2 such that X⊤X = ((1, 0.2), (0.2,−0.2)).
We consider β⋆ = (−0.2, 2) ∈ R2 and outputs y = Xβ⋆. This setting is such that the loss L
has β⋆ as its unique minimum and L(β∗) = 0. Furthermore the non-convex loss F has 3 saddles
which map to: βc,0 := (0, 0) = argminβi=0,∀i L(β), βc,1 := (0.2, 0) = argminβ[2]=0 L(β) and
βc,2 := (0, 1.6) = argminβ[1]=0 L(β). The loss function L is sketched in Figure 2 (Left). Notice
that by the definition of βc,1 and βc,2, the gradients of the loss at these points are orthogonal to the
axis they belong to. When running gradient flow with a small initialisation over our diagonal linear
network, we obtain the plots illustrated Figure 2 (Middle and Right). We observe three jumps: the
iterates jump from the saddle at the origin to βc,1 at time t1, then to βc,2 at time t2 and finally to the
global minimum β⋆at time t3.
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Figure 2: Left: Sketch of the 2d loss. Middle and right: Outputs of gradient flow with small
initialisation scale: the iterates are piecewise constant and st is piecewise linear across time. We refer
to the main text for further details.

Let us show how Eq. (12) enables us to theoretically recover this trajectory. A simple observation
which we will use several times below is that for any t′ > t such that β̃◦ is constant equal to β over
the time interval (t, t′), the definition of s enables to write that st′ = st − (t′ − t) · ∇L(β).
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Zeroth saddle: The iterates are at the saddle at the origin: β̃◦
t = β0 := βc,0 and therefore

st = −t·∇L(β0). Our key equation Eq. (12) is verified since st = −t·∇L(β0) ∈ ∂∥β0∥1= [−1, 1]d.
However the iterates cannot stay at the origin after time t1 := 1/∥∇L(β0)∥∞ which corresponds to
the time at which the first coordinate of st hits +1: st1 [1] = 1. If the iterates stayed at the origin after
t1, (K1) for i = 1 would be violated. The iterates must hence jump.

First saddle: The iterates can only jump to a point different from the origin which maintains
Eq. (12) valid. We denote this point as β1. Notice that:

• st1 [2] = −t1 · ∇L(β0)[2] ∈ (−1, 1) and since st is continuous, we must have β1[2] = 0 (K3)
• st1 [1] = 1 and hence for t ≥ t1, st[1] = 1− (t− t1)∇L(β1)[1]. We cannot have∇L(β1)[1] <
0 (K1), and neither∇L(β1)[1] > 0 since otherwise st[1] ∈ (−1, 1) and β1 = 0 (K3)

The two conditions β1[2] = 0 and ∇L(β1)[1] = 0 uniquely defines β1 as equal to βc,1. We now
want to know if and when the iterates jump again. We saw that st[1] remains at the value +1. However
since β1 is not a global minimum, ∇L(β1)[2] ̸= 0 and st[2] hits +1 at time t2 defined such that
−(t1∇L(β0) + (t2 − t1)∇L(β1))[2] = 1. The iterates must jump otherwise (K1) would break.

The iterates cannot jump to β⋆ yet! As the second coordinate of the iterates can activate, one
could expect the iterates to be able to jump to the global minimum. However note that st is a
continuous function and that st2 is equal to the vector (1, 1). If the iterates jumped to the global
minimum, then the first coordinate of the iterates would change sign from +0.2 to −0.2. Due to (K4)
this would lead st jumping from +1 to −1, violating its continuity.

Second saddle: We denote as β2 the point to which the iterates jump. st2 is now equal to the vector
(1, 1) and therefore (i) β2 ≥ 0 (coordinate-wise) from (K2 and K3) and the continuity of s. Since
st = st2 − (t − t2)∇L(β2), we must also have: (ii) ∇L(β2) ≥ 0 from (K1) (iii) for i ∈ {1, 2}, if
β2[i] ̸= 0 then ∇L(β2)[i] = 0 from (K4). The three conditions (i), (ii) and (iii) precisely correspond
to the optimality conditions of the following problem:

argmin
β[1]≥0,β[2]≥0

L(β).

The unique minimiser of this problem is βc,2, hence β2 = βc,2, which means that the first coordinate
deactivates. Similar to before, (K1) is valid until the time t3 at which the first coordinate of st =
st2 − (t− t2)∇L(β2) reaches −1 due to the fact that∇L(β2)[1] > 0.

Global minimum: We follow the exact same reasoning as for the second saddle. We now have
st3 equal to the vector (−1, 1) and the iterates must jump to a point β3 such that (i) β3[1] ≤ 0,
β3[2] ≥ 0 (K2 and K3), (ii) ∇L(β3)[1] ≤ 0, ∇L(β3)[2] ≥ 0 (K1), (iii) for i ∈ {1, 2}, if β3[i] ̸= 0
then∇L(β3)[i] = 0 (K4). Again, these are the optimality conditions of the following problem:

argmin
β[1]≤0,β[2]≥0

L(β).

β⋆ is the unique minimiser of this problem and β3 = β⋆. For t ≥ t3 we have st = st3 and Eq. (12) is
satisfied for all following times: the iterates do not have to move anymore.

3.2 Presentation of the full saddle-to-saddle algorithm

We can now provide the full algorithm (Algorithm 1) which computes the jump times (t1, . . . , tp) and
saddles (β0 = 0, β1, . . . , βp) as the values and vectors such that the associated piecewise constant
process satisfies Eq. (12) for all t. This algorithm therefore defines our limiting process β̃◦.

Algorithm 1 in words. The algorithm is a concise representation of the steps we followed in the
previous section to construct β̃◦. We explain each step in words below. Starting from k = 0, assume
we enter the loop number k at the saddle βk computed in the previous loop:

• The set Ak contains the set of coordinates "which are unstable": by having a non-zero
derivative, the loss could be decreased by moving along each one of these coordinates and
one of these coordinates will have to activate.
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Algorithm 1: Successive saddles and jump times of limα→0β̃
α

Initialise: (t, β, s)← (0,0,0);
while ∇L(β) ̸= 0 do
A ← {j ∈ [d],∇L(β)(j) ̸= 0}
∆← inf {δ > 0 s.t. ∃i ∈ A, s(i)− δ∇L(β)(i) = ±1}
(t, s)← (t+∆, s−∆ · ∇L(β))

β ← argmin L(β) where β ∈
{
β ∈ Rd s.t.

βi≥0 if s(i)=+1
βi≤0 if s(i)=−1
βi=0 if s(i)∈(−1,1)

}
end
Output: Successive values of β and t

• The time gap ∆k corresponds to the time spent at the saddle βk. It is computed as being the
elapsed time just before (K1) breaks if the coordinates do not jump.

• We update tk+1 = tk +∆k and sk+1 = sk −∆k∇L(βk): tk+1 corresponds to the time at
which the iterates leave the saddle βk and sk+1 constrains the signs of the next saddle βk+1

• The solution βk+1 of the constrained minimisation problem is the saddle to which the flow
jumps to at time tk+1. The optimality conditions of this problem are such that Eq. (12) is
maintained for t ≥ tk+1.

Various comments on Algorithm 1. First we point out that any solution βc of the constrained min-
imisation problem which appears in Algorithm 1 also satisfies βc = argminβ[i]=0 for i/∈supp(βc) L(β)
as in Eq. (4): the algorithm hence indeed outputs saddles as expected. Up until now we have never
checked whether the algorithm’s constrained minimisation problem has a unique minimum. This is
crucial otherwise the assignment step would be ill-defined. Showing the uniqueness is non-trivial
and is guaranteed thanks to the general position Assumption 1 on the data (see Proposition 7 in
Appendix D.1). In this same proposition, we also show that the algorithm terminates in at most
min (2d,

∑n
k=0

(
d
k

)
) steps, that the loss strictly decreases at each step and that the final output βp

is the minimum ℓ1-norm solution. These last two properties are expected given the fact that the
algorithm arises as being the limit process of β̃α which follows the mirror flow Eq. (10).

Links with the LARS algorithm for the Lasso. Recall that the Lasso problem [46, 15] is formulated
as:

β⋆
λ = argmin

β∈Rd

L(β) + λ∥β∥1. (13)

The optimality condition of Eq. (13) writes −∇L(β⋆
λ) ∈ λ∂∥β⋆

λ∥1. Now notice the similarity
with Eq. (12): the two would be equivalent with λ = 1/t if the integration on the left hand side
of Eq. (12) did not average over the whole trajectory but only on the final iterate, in which case
−
∫ t

0
∇L(β̃◦

t )ds = −t · ∇L(β̃◦
t ). Though the difference is small, the trajectories of our limiting

trajectory β̃◦ and the lasso path (β⋆
λ)λ are quite different: one has jumps, whereas the other is

continuous. Nonetheless, the construction of Algorithm 1 shares many similarities with that of the
Least Angle Regression (LARS) algorithm [19] (originally named the Homotopy algorithm [39])
which is used to compute the Lasso path. A notable difference however is the fact that each step of
our algorithm depends on the whole trajectory through the vector s, whereas the LARS algorithm can
be started from any point on the path.

3.3 Outputs of the algorithm under a RIP and gap assumption on the data.

Unlike previous results on incremental learning, complex behaviours can occur when the feature
matrix is ill designed: several coordinates can activate and deactivate at the same time (see Appendix A
for various cases). However, if the feature matrix satisfies the 2r-restricted isometry property
(RIP) [14] and there exists an r-sparse solution β⋆, the visited saddles can be easily approximated
using Algorithm 1. We provide the precise characterisation below.
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Sparse regression with RIP and gap assumption. (RIP) Assume that there exists an r-sparse
vector β⋆ such that yi = ⟨xi, β

⋆⟩. Furthermore we assume that the feature matrix X ∈ Rn,d satisfies
the 2r-restricted isometry property with constant ε̃ <

√
2− 1 < 1/2: i.e. for all submatrix Xs where

we extract any s ≤ 2r columns of X , the matrix X⊤
s Xs/n of size s × s has all its eigenvalues in

the interval [1− ε̃, 1 + ε̃]. (Gap assumption) Furthermore we assume that the r-sparse vector β⋆

has coordinates which have a “sufficient gap’. W.l.o.g we write β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0) with

|β⋆
1 |≥ . . . ≥ |β⋆

r |> 0 and we define λ := mini∈[r](|β⋆
i |−|β⋆

i+1|) ≥ 0 which corresponds to the
smallest gap between the entries of |β⋆|. We assume that 5ε̃∥β⋆∥2< λ/2 and we let ε := 5ε̃.

A classic result from compressed sensing (see Candes [13, Theorem 1.2]) is that the 2r-restricted
isometry property with constant

√
2− 1 ensures that the minimum ℓ0-minimisation problem has a

unique r-sparse solution which is β⋆. This means that Algorithm 1 will have β⋆ as final output and
the following proposition shows that we can precisely characterise each of its outputs when the data
satisfies the previous assumptions.
Proposition 2. Under the restricted isometry property and the gap assumption stated right above,
Algorithm 1 terminates in r-loops and outputs:

β1 = (β1[1], 0, . . . , 0) with β1[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

2 + ε∥β⋆∥]

β2 = (β2[1], β2[2], 0, . . . , 0) with
{

β2[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

1 + ε∥β⋆∥]
β2[2] ∈ [β⋆

2 − ε∥β⋆∥, β⋆
2 + ε∥β⋆∥]

...
βr−1 = (βr−1[1], . . . , βr−1[r − 1], 0, . . . , 0) with βr−1[i] ∈ [β⋆

i − ε∥β⋆∥, β⋆
i + ε∥β⋆∥ ]

βr = β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0),

at times t1, . . . , tr such that ti ∈
[

1
|β⋆

i |+ε∥β⋆∥ ,
1

|β⋆
i |−ε∥β⋆∥

]
and where ∥·∥ denotes the ℓ2 norm.

Informally, this means that the algorithm terminates in exactly r loops and outputs jump times and
saddles roughly equal to ti = 1/|β⋆

i | and βi = (β⋆
1 , · · · , β⋆

i , 0, . . . , 0). Therefore, in simple settings,
the support of the sparse vector is learnt a coordinate at a time, without any deactivations. We refer to
Appendix D.2 for the proof.

4 Convergence of the iterates towards the process defined by Algorithm 1

We are now fully equipped to state our main result which formalises the convergence of the accelerated
iterates towards the limiting process β̃◦ which we built in the previous section.
Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆

ℓ1
) and jump times (t0 = 0, t1, . . . , tp)

be the outputs of Algorithm 1 and let (β̃◦
t )t be the piecewise constant process defined as follows:

(Saddles) β̃◦
t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃α
t )t defined in Eq. (9) uniformly converges towards the limiting process (β̃◦

t )t
on any compact subset of R≥0\{t1, . . . , tp}.

Convergence result. We recall that from a technical point of view, showing the existence of a limiting
process limα→0 β̃

α is the toughest part. Theorem 2 provides this existence as well as the uniform
convergence of the accelerated iterates towards β̃◦ over all closed intervals of R which do not contain
the jump times. We highlight that this is the strongest type of convergence we could expect and a
uniform convergence over all intervals of the form [0, T ] is impossible given that the limiting process
β̃◦ is discontinuous. In Proposition 3, we give an even stronger result by showing a graph convergence
of the iterates which takes into account the path followed between the jumps. We also point out
that we can easily show the same type of convergence for the accelerated weights w̃α

t := wα
t̃α(t)

.
Indeed, using the bijective mapping which links the weights wt and the predictors βt (see Lemma 1 in
Appendix C), we immediately get that the accelerated weights (ũα, ṽα) uniformly converge towards

the limiting process (
√
|β̃◦|, sign(β̃◦)

√
|β̃◦|) on any compact subset of R≥0\{t1, . . . , tp}.
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Estimates for the non-accelerated iterates βα
t . We point out that our result provides no speed

of convergence of β̃α towards β̃◦. We believe that a non-asymptotic result is challenging and
leave it as future work. Note that we experimentally notice that the convergence rate quickly
degrades after each saddle. Nonetheless, we can still write for the non-accelerated iterates that
βα
t = β̃α

t/ln(1/α) ∼ β̃◦
t/ln(1/α) as α→ 0. Hence, for α small enough the iterates βα

t are roughly equal
to 0 until time t1 ·ln(1/α) and the minimum ℓ1-norm interpolator is reached at time tp ·ln(1/α). Such
a precise estimate of the global convergence time is rather remarkable and goes beyond classical
Lyapunov analysises which only leads to L(βα

t ) ≲ ln(1/α)/t (see Proposition 4 in Appendix C).

Natural extensions of our setting. More general initialisations can easily be dealt with. For instance,
initialisations of the form ut=0 = αu0 ∈ Rd lead to the exact same result as it is shown in [50]
(Discussion after Theorem 1) that the associated mirror still converges to the ℓ1-norm. Initialisations
of the form [ut=0]i = αki , where ki > 0, lead to the associated potential converging towards a
weighted ℓ1-norm and one should modify Algorithm 1 by accordingly weighting ∇L(β) in the
algorithm. Also, deeper linear architectures of the form βw = wD

+ − wD
− as in [50] do not change

our result as the associated mirror still converges towards the ℓ1-norm. Though we only consider
the square loss in the paper, we believe that all our results should hold for any loss of the type
L(β) =

∑n
i=1 ℓ(yi, ⟨xi, β⟩) where for all y ∈ R, ℓ(y, ·) is strictly convex with a unique minimiser at

y. In fact, the only property which cannot directly be adapted from our results is showing the uniform
boundedness of the iterates (see discussion before Proposition 5 in Appendix C).

4.1 High level sketch of proof of β̃α → β̃◦ which leverages an arc-length parametrisation

In this section, we give the high level ideas concerning the proof of the convergence β̃α → β̃◦ given
in Theorem 2. A full and detailed proof can be found in Appendix E. The main difficulty stems
from the non-continuity of the limit process β̃◦. To circumvent this difficulty, a clever trick which
we borrow to [18, 36] is to “slow-down” time when the jumps occur by considering an arc-length
parametrisation of the path. We consider the R≥0 arclength bijection τα and leverage it to define
the ‘appropriately slowed down’ iterates β̂α

τ as:

β̂α
τ = β̃α

t̂α(τ)
where t̂ατ = (τα)−1(τ) and τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

This time reparametrisation has the fortunate but crucial property of leading to ˙̂tα(τ) + ∥ ˙̂βα
τ ∥= 1

by a simple chain rule, which means that the speed of (β̂α
τ )τ is uniformly upperbounded by 1

independently of α. This behaviour is in stark contrast with the process (β̃α
t )t which has a speed

which explodes at the jumps. This change of time now allows us to use Arzelà-Ascoli’s theorem
to extract a subsequence which uniformly converges to a limiting process which we denote β̂.
Importantly, β̂ enables to keep track of the path followed between the jumps as we show that its
trajectory has two regimes:

Saddles: β̂τ = βk Connections: ˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
.

The process β̂ is illustrated on the right: the red curves correspond to the
paths which the iterates follow during the jumps. These paths are called
heteroclinic orbits in the dynamical systems literature [31, 3]. To prove
Theorem 2, we can map back the convergence of β̂α to show that of β̃α .
Moreover from the convergence β̂α → β̂ we get a more complete picture
of the limiting dynamics of β̃α as it naturally implies the convergence
of the graph of the iterates (β̃α

t )t converges towards that of (β̂τ )τ . The
graph convergence result is formalised in this last proposition.
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Proposition 3. For all T > tp, the graph of the iterates (β̃α
t )t≤T converges to that of (β̂τ )τ :

dist({β̃α
t }t≤T , {β̂τ}τ≥0) −→

α→0
0 (Hausdorff distance)
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5 Further discussion and conclusion

Link between incremental learning and saddle-to-saddle dynamics. The incremental learning
phenomenon and the saddle-to-saddle process are often complementary facets of the same idea and
refer to the same phenomenon. Indeed for gradient flows dwt = −∇F (wt)dt, fixed points of the
dynamics correspond to critical points of the loss. Stages with little progress in learning and minimal
movement of the iterates necessarily correspond to the iterates being in the vicinity of a critical
point of the loss. It turns out that in many settings (linear networks [30], matrix sensing [8, 41]),
critical points are necessarily saddle points of the loss (if not global minima) and that they have a
very particular structure (high sparsity, low rank, etc.). We finally note that an alternative approach to
realising saddle-to-saddle dynamics is through the perturbation of the gradient flow by a vanishing
noise as studied in [6].

Characterisation of the visited saddles. A common belief is that the saddle-to-saddle trajectory
can be found by successively computing the direction of most negative curvature of the loss (i.e.
the eigenvector corresponding to the most negative eigenvalue) and following this direction until
reaching the next saddle [26]. However this statement cannot be accurate as it is inconsistent with
our algorithm in our setting. In fact, it can be shown that this algorithm would match the orthogonal
matching pursuit (OMP) algorithm [42, 17] which does not necessarily lead to the minimum ℓ1-norm
interpolator. In [7], which is the closest to our work and the first to prove convergence of the iterates
towards a piece-wise constant process, the successive saddles are entirely characterised and connected
to the Lasso regularisation path in the underparameterised setting. Recently, [9] extended the diagonal
linear network setting to diagonal parametrisations of the form fu⊙v, but at the cost of stronger
assumptions on the trajectory.

Adaptive Inverse Scale Space Method. Following the submission of our paper, we were informed
that Algorithm 1 had already been proposed and analysed in the compressed sensing literature.
Indeed it exactly corresponds to the Adaptive Inverse Scale Space Method (aISS) proposed in [11].
The motivations behind its study are extremely different from ours and originate from the study
of Bregman iteration [12, 40, 52] which is an efficient method for solving ℓ1 related minimisation
problems. The so-called inverse scale space flow which corresponds to Eq. (12) in our paper can be
seen as the continuous version of Bregman iteration. As in our paper, [11] show that this equation can
be solved through an iterative algorithm. We refer to [51, Section 2] for further details. However we
did not find any results in this literature concerning the uniqueness of the constrained minimisation
problem due to Assumption 1, nor on the maximum number of iterations, the behaviour under RIP
assumptions and the maximum number of active coordinates.

Subdifferential equations and rate-independent systems. As in Eq. (12), subdifferential inclusions
of the form ∇L(βt) ∈ d

dt∂h(βt) for non-differential functions h have been studied by Attouch
et al. [4] but for strongly convex functions h. In this case, the solutions are continuous and do not
exhibit jumps. On another hand, [18, 36, 37] consider so-called rate-independent systems of the form
∂qE(t, qt) ∈ ∂h(q̇t) for 1-homogeneous dissipation potentials h. Examples of such systems are
ubiquitous in mechanics and appear in problems related to friction, crack propagation, elastoplasticity
and ferromagnetism to name a few [35, Ch. 6 for a survey]. As in our case, the main difficulty with
such processes is the possible appearance of jumps when the energy E is non-convex.

Conclusion. Our study examines the behaviour of gradient flow with vanishing initialisation over
diagonal linear networks. We prove that it leads to the flow jumping from a saddle point of the loss to
another. Our analysis characterises each visited saddle point as well as the jumping times through an
algorithm which is reminiscent of the LARS method used in the Lasso framework. There are several
avenues for further exploration. The most compelling one is the extension of these techniques to
broader contexts for which the implicit bias of gradient flow has not yet fully been understood.
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Organisation of the Appendix.

1. In Appendix A, we give the experimental setup and provide additional experiments.
2. In Appendix B, we prove Proposition 1 and provide additional comments concerning the

unicity of the minimisation problem which appears in the proposition.
3. In Appendix C, we provide some general results on the flow.
4. In Appendix D, we prove Proposition 2 and give standalone properties of Algorithm 1.
5. In Appendix E, we explain in more detail the arc-length parametrisation explained in the

main text as well as prove Theorem 2 and Proposition 3.
6. In Appendix F, we provide technical lemmas which are useful to prove the main results.
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A Experimental setup and additional: experiments, extension, related works.

Experimental setup and additional experiments. For each experiment we generate our dataset
as yi = ⟨xi, β

⋆⟩ where xi = N (0, H) for a a diagonal covariance matrix H and β⋆ is a vector of
Rd. Gradient descent is run with a small step size and from initialisation ut=0 =

√
2α1 ∈ Rd and

vt=0 = 0 for some initialisation scale α > 0.

• Figure 1 and Figure 4 (Left): (n, d, α) = (5, 7, 10−120), H = Id, β⋆ =
(10, 20, 0, 0, 0, 0, 0) ∈ R7.

• Figure 4 (Right): (n, d, α) = (6, 6, 10−10), H = diag(1, 10, 10, 10, 10, 10) ∈ R6×6,
β⋆ = (1, 0, 0, 0, 0, 0, 0) ∈ R6.

• Figure 3 (Left): (n, d, α1, α2) = (7, 2, 10−100, 10−10), H = Id, β⋆ = (10, 20) ∈ R7.
• Figure 3 (Right): (n, d, α) = (3, 3, 10−100) , X is the square root matrix of the matrix
((20, 6,−1.4), (6, 2,−0.4), (−1.4,−0.4, 0.12)) ∈ R3×3, β⋆ = (1, 9, 10).
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Figure 3: Left: Visualisation of the uniform convergence of β̃α towards β̃◦ as α → 0. α1 =
10−100 ≪ α2 = 10−10 Right: In some cases, 2 coordinates can activate at the same time. Note that
the time axis is in log-scale for better visualisation.
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B Proof of Proposition 1

Proposition 1. All the critical points wc of F which are not global minima, i.e., ∇F (wc) = 0 and
F (wc) > minw F (w), are necessarily saddle points (i.e., not local extrema). They map to parameters
βc = uc ⊙ vc which satisfy |βc|⊙∇L(βc) = 0 and:

βc ∈ argmin
β[i]=0 for i/∈supp(βc)

L(β) (4)

where supp(βc) = {i ∈ [d], βc[i] ̸= 0} corresponds to the support of βc.

Proof. Non-existence of maxima / non-global minima. This is a simpler version of results which
appear in [30], for the sake of completeness we provide here a simple proof adapted to our setting.
The intuition follows the fact that if there existed a local maximum / non-global minimum for F then
this would translate to the existence of a local maximum / non-global minimum for the convex loss L,
which is absurd.

Assume that there exists a local maximum w⋆ = (u⋆, v⋆), i.e. assume that there exists ε > 0 such
that for all w = (u, v) such that ∥w − w⋆∥22≤ ε, F (w) ≤ F (w⋆). We show that this would imply
that β⋆ = u⋆ ⊙ v⋆ is a local maximum of L, which is absurd.

The mapping g : (u, v) 7→ (u⊙ v,
√
(u2 − v2)/2) from Rd

≥0 ×Rd → Rd ×Rd
≥0 is a bijection with

inverse

g−1 : (β, α) 7→ (

√
α2 +

√
β2 + α4, sign(β)⊙

√
−α2 +

√
β2 + α4). (14)

Also notice that F (g−1(β, α)) = L(β) for all β and α. Now let ε̃ > 0 and let β ∈ Rd such that
∥β − β⋆∥22≤ ε̃, then for (u, v) = g−1(β, α∗) where α∗ =

√
((u⋆)2 − (v⋆)2)/2 we have that:

∥(u, v)− (u⋆, v⋆)∥22 = 2
∥∥∥(√α4

∗ + β2 −
√
α4
∗ + β⋆2

)2∥∥∥
1

≤ 2∥β2 − β⋆2∥1
= 2∥(β − β⋆)2 + 2(β − β⋆)β⋆∥1
≤ 2∥(β − β⋆)2∥1+2∥β⋆∥∞∥β − β⋆∥1
≤ 2(1 +

√
d∥β⋆∥∞)ε̃

≤ ε

where the last inequality is for ε̃ small enough. This means that L(β) = F (w) ≤ F (w⋆) = L(β⋆)
and β⋆ is a local maximum of L, which is absurd.

The exact same proof holds to show that there are no local minima of F which are not global minima.

Critical points. The gradient of the loss function F writes:

∇wF (w) =

(
∇uF (w)
∇vF (w)

)
=

(
∇L(β)⊙ v
∇L(β)⊙ u

)
∈ R2d.

Therefore ∇F (wc) = 0 ∈ R2d implies that ∇L(βc)⊙ βc = 0 ∈ Rd. Now consider such a βc and
let supp(βc) = {i ∈ [d] such that βc(i) ̸= 0} denote the support of βc. Since [∇L(βc)]i = 0 for
i /∈ supp(βc), we can therefore write that

βc ∈ argmin
βi=0 for i ̸∈supp(βc)

L(β).

Furthermore we point out that since supp(βc) ⊂ [d], there are at most 2d distinct sets supp(βc), and
therefore at most 2d values F (wc) = L(βc), where wc is a critical point of F .

Additional comment concerning the uniqueness of argminβi=0,i̸∈supp(βc) L(β).
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We point out that the constrained minimisation problem (4) does not necessarily have a unique
solution, even when βc is not a global solution. Though not required for any of our results, for the
sake of completeness, we show here that under an additional mild assumption on the data, we can
ensure that the minimisation problem (4) which appears in Proposition 1 has a unique minimum
when L(βc) > 0. Under this additional assumption, there is therefore a finite number of saddles βc.
Recall that we let X ∈ Rn×d be the feature matrix and (x̃1, . . . , x̃d) be its columns. Now assume
temporarily that the following assumption holds.
Assumption 2 (Assumption used just in this short section). Any subset of (x̃1, . . . , x̃d) of size smaller
than min(n, d) is linearly independent.

One can easily check that this assumption holds with probability 1 as soon as the data is drawn from
a continuous probability distribution, similarly to [47, Lemma 4]). In the following, for a subset
ξ = {i1, . . . , ik} ⊂ [d], we write Xξ = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract the columns from X).
For a vector β ∈ Rd we write β[ξ] = (βi1 , . . . , βik) and β[ξC ] = (βi)i/∈ξ. We distinguish two
different settings:

• Underparametrised setting (n ≥ d) : in this case, for any ξ = {i1, . . . , ik} ⊂ [d], then
β⋆ := argmin

βi=0,i̸∈ξ
L(β) is unique. Indeed we simply set the gradient to 0 and notice that

due to Assumption 2, there exists a unique solution, indeed it is β⋆ such that β⋆[ξ] =
(X⊤

ξ Xξ)
−1X⊤

ξ y and β⋆[ξC ] = 0.

• Overparametrised setting (d > n) : Global solutions: argminβ∈Rd L(β) is an affine space
spanned by the orthogonal of (x1, . . . , xn) in Rd. Since span(x̃1, . . . , x̃d) = Rn from
Assumption 2, any β⋆ ∈ argminβ∈Rd L(β) satisfies Xβ⋆ = y and L(β⋆) = 0. "Saddle
points": now let βc ∈ Rd be such that we can write βc ∈ argminβi=0,i/∈supp(βc) L(β) and
assume that L(βc) > 0 (i.e., not a global solution), then: (1) βc has at most n non-zero
entries, indeed if it were not the case, then y would necessarily belong to span(x̃i)i∈supp(βc)

due to the assumption on the data, and this would lead to L(βc) = 0, (2) therefore, similar
to the underparametrised case, argminβi=0,i/∈supp(βc) L(β) is unique, equal to βc, and we
have that βc[ξ] = (X⊤

ξ Xξ)
−1X⊤

ξ y and βc[ξ
C ] = 0 where ξ = supp(βc).

Thus, in both the underparametrised and overparametrised settings, the minimisation problem (4)
appearing in Proposition 1 has a unique minimum when L(βc) > 0 and Assumption 2 holds.
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C General results on the iterates

In the following lemma we recall a few results concerning the gradient flow Eq. (5):

dwt = −∇F (wt)dt , (15)

where F is defined in Eq. (3) as:

F (w) := L(u⊙ v) =
1

2n

n∑
i=1

(⟨u⊙ v, xi⟩ − yi)
2 .

Lemma 1. For an initialisation u0 =
√
2α, v0 = 0, the flow wα

t = (uα
t , v

α
t ) from Eq. (15) is such

that the quantity (uα
t )

2 − (vαt )
2 is constant and equal to 2α21. Furthermore uα

t > |vαt |≥ 0 and
therefore from the bijection Eq. (14) we have that:

uα
t =

√
α2 +

√
(βα

t )
2 + α4, vαt = sign(βα

t )⊙
√
−α2 +

√
(βα

t )
2 + α4.

Proof. From the expression of ∇F (w), notice that the derivative of (uα
t )

2 − (vαt )
2 is equal to 0 and

therefore equal to its initial value.

Since (uα
t )

2 − (vαt )
2 = (uα

t + vαt )(u
α
t − vαt ) > 0, by continuity we get that uα

t + vαt > 0 and
uα
t − vαt > 0 and therefore uα

t > |vαt |.

In this section we consider the accelerated iterates Eq. (9) which follow:

d∇ϕ̃α(β̃
α
t ) = −∇L(β̃α

t )dt, where ϕ̃α :=
1

ln(1/α)
· ϕ̃α (16)

with β̃t=0 = 0 and where ϕα is defined Eq. (7).

Proposition 4. For all α > 0 and minimum β⋆ ∈ argminβ L(β), the loss values L(β̃α
t ) and the

Bregman divergence Dϕ̃α
(β⋆, β̃α

t ) are decreasing. Moreover

L(β̃α
t )− L(β⋆) ≤ ϕ̃α(β

⋆)

2t
, (17)

L
(1
t

∫ t

0

β̃α
s ds

)
− L(β⋆) ≤ ϕ̃α(β

⋆)

2t
. (18)

Proof. The loss is decreasing since: d
dtL(β̃

α
t ) = ∇L(β̃α

t )
⊤
β̇α
t = − ˙̃

βα⊤

t ∇2ϕ̃α(β̃
α
t )

˙̃
βα
t ≤ 0.

d
dtDϕ̃α

(β⋆, β̃α
t ) = −∇L(β̃α

t )
⊤(β̃α

t − β⋆) = −2(L(β̃α
t ) − L(β⋆)) (since L is the quadratic loss),

therefore the Bregman distance is decreasing. We can also integrate this last equality from 0 to t, and
divide by −2t:

1

t

∫ t

0

L(β̃α
s )ds− L(β⋆) =

Dϕ̃α
(β⋆, βα

0 = 0)−Dϕ̃α
(β⋆, βα

t )

2t

≤ ϕ̃α(β
⋆)

2t
.

Since the loss is decreasing we get that L(β̃α
t )− L(β⋆) ≤ ϕ̃α(β⋆)

2t and from the convexity of L we

get that L
(

1
t

∫ t

0
β̃α
s ds

)
− L(β⋆) ≤ ϕ̃α(β⋆)

2t .

In the following proposition, we show that for α small enough, the iterates are bounded independently
of α. Note that this result unfortunately only holds for the quadratic loss, we expect it to hold for
other convex losses of the type L(β) = 1

n

∑
i ℓ(yi, ⟨xi, β⟩) where ℓ(y, ·) is strictly convex has a

unique root at y but we don’t know how to show it. Also note that bounding the accelerated iterates
β̃α is equivalent to bounding the iterates βα since β̃α

t = βα
ln(1/α)t.
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Proposition 5. For α < α0, where α0 depends on β⋆
ℓ1

, the iterates β̃α
t are bounded independently of

α:

∥β̃α
t ∥∞≤ 3∥β⋆

ℓ1∥1+1

Proof. From Eq. (16), integrating and using that L is the quadratic loss, we get:

∇ϕ̃α(β̃
α
t ) =

t

n
X⊤(y −Xβ̄α

t ) = −
t

n
X⊤X(β̄α

t − β⋆),

where we recall that X ∈ Rn×d is the input data represented as a matrix and where we denote the
averaged iterate by β̄α

t = 1
t

∫ t

0
β̃α
s ds. Thus we get

∇ϕ̃α(β̃
α
t )

⊤(β̃α
t − β⋆) = − t

n
(β̄α

t − β⋆)⊤X⊤X(β̃α
t − β⋆). (19)

By convexity of ϕ̃α we have ϕ̃α(β
α
t )− ϕ̃α(β

⋆) ≤ ∇ϕ̃α(β
α
t )

⊤(βα
t − β⋆). By the Cauchy-Schwarz

inequality, we also have (β̄α
t − β⋆)⊤X⊤X(βα

t − β⋆) ≤ ∥X(βα
t − β⋆)∥∥X(β̄α

t − β⋆)∥. Using
Proposition 4: ∥X(βα

t − β⋆)∥2≤ nϕ̃α(β
⋆)/t and ∥X(β̄α

t − β⋆)∥2≤ nϕ̃α(β
⋆)/t we can further

bound the right hand side of Eq. (19) as

− t

n
(β̄α

t − β⋆)⊤X⊤X(βα
t − β⋆) ≤ ϕ̃α(β

⋆).

Thus it yields

ϕ̃α(β
α
t )− ϕ̃α(β

⋆) ≤ ϕ̃α(β
⋆).

From [50] (proof of Lemma 1 in the appendix) we get that for

α < min
{
1,
√
∥β∥1, (2∥β∥1)−1

}
then:

ϕ̃α(β) ≤
3

2
∥β∥1,

and for all α < exp(−d/2):

ϕ̃α(β) ≥ ∥β∥1−
d

ln(1/α2)

≥ ∥β∥1−1,
which finally leads for

α < α0 := min
{
1,
√
∥β⋆

ℓ1
∥1,

(
2∥β⋆

ℓ1∥1
)−1

, exp(−d/2)
}

to the result.

The following proposition shows that we can bound the path length of the flow β̃α independently of α.
Keep in mind that the path length of β̃α is equivalent to that of βα as the first is just an acceleration
of the second: β̃α

t = βα
ln(1/α)t.

Proposition 6. For α < α0 where α0 is the same as in Proposition 5, the path length of the iterates
(βα

t )t≥0 is bounded independently of α > 0:∫ +∞

0

∥β̇α
t ∥dt < C,

where C does not depend on α. Hence the path length of the accelerated flow β̃α is also bounded
independently of α.
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Proof. Having shown that the iterates βα
t are bounded independently of α, it also implies that the

iterates wt = (ut, vt) are bounded following Lemma 1. Since the loss w 7→ F (w) is a multivari-
ate polynomial function, it is a semialgebraic function and we can consequently apply the result
of Kurdyka [32, Theorem 2] which grants that∫ +∞

0

∥ẇt∥dt < C,

where the constant C only depends on the loss and on the bound on the iterates. We further use
that β̇ = u̇⊙ v + u⊙ v̇ and ∥u̇⊙ v + u⊙ v̇∥≤ C1(∥u̇∥+∥v̇∥) using that u and v are bounded and
∥u̇∥+∥v̇∥≤ C2∥ẇ∥ using the equivalence of norms. Therefore

∫ +∞
0
∥β̇α

t ∥dt < C for some C which
is independent of the initialisation scale α.
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D Standalone properties of Algorithm 1

D.1 “Well-definedness” of Algorithm 1 and upperbound on its number of loops

Notice that this proposition highlights the fact that Algorithm 1 is on its own an algorithm of interest
for finding the minimum ℓ1-norm solution in an overparametrised regression setting. We point out that
the provided upperbound on the number of iterations is very crude and could certainly be improved.
Proposition 7. Algorithm 1 is well defined: at each iteration (i) the attribution of ∆ is well defined
as ∆ < +∞, (ii) the constrained minimisation problem has a unique solution and the attribution
of the value of β is therefore well-founded. Furthermore, along the loops: the iterates β have at
most n non-zero coordinates, the loss is strictly decreasing and the algorithm terminates in at most
min (2d,

∑n
k=0

(
d
k

)
) steps by outputting the minimum ℓ1-norm solution β⋆

ℓ1
:= arg min

β∈ argminL
∥β∥1.

Proof. In the following, for the matrix X and for a subset I = {i1, . . . , ik} ⊂ [d], we write
XI = (x̃i1 , . . . , x̃ik) ∈ Rn×k (we extract the columns from X). For a vector β ∈ Rd we write
βI = (βi1 , . . . , βik).

(1) The constrained minimisation problem has a unique solution: we follow the proof of [47,
Lemma 2]. Following the notations in Algorithm 1, we define I = {i ∈ [d], |si|= 1} and we
point out that after k loops of the algorithm, the value of s is equal to s = −(∆1∇L(β0) + · · · +
∆k∇L(βk−1)) ∈ span(x1, . . . , xn). We can therefore write s = X⊤r for some r ∈ Rn.

Now assume that ker(XI) ̸= {0}. Then, for some i ∈ I , we have x̃i =
∑

j∈I\{i} cj x̃j where cj ∈ R.
Without loss of generality, we can assume that I \ {i} has at most n elements. Indeed, we can
otherwise always find n elements Ĩ ⊂ I \ {i} such that x̃i =

∑
j∈Ĩ cj x̃j . Rewriting the previous

equality, we get

six̃i =
∑

j∈I\{i}

(sisjcj)(sj x̃j). (20)

Now by definitions of the set I and of r, we have that ⟨x̃j , r⟩ = sj ∈ {+1,−1} for any j ∈ I . Taking
the inner product of Eq. (20) with r, we obtain that 1 =

∑
j∈I\{i}(sisjcj). Consequently, we have

shown that if ker(XI) ̸= {0}, then we necessarily have for some i ∈ I ,

six̃i =
∑

j∈I\{i}

aj(sj x̃j),

with
∑

j∈I\{i} aj = 1, which means that six̃i lies in the affine space generated by (sj x̃j)j∈I\{i}.
This fact is however impossible due to Assumption 1 (recall that without loss of generality we
have that I \ {i} has at most n elements, and trivially less that d elements). Therefore XI is full
rank, and Card(I) ≤ n. Now notice that the constrained minimisation problem corresponds to
argminβi≥0,i∈I+

βi≤0,i∈I−

∥y −XIβI∥22. Since XI is full rank, this restricted loss is strictly convex and the

constrained minimisation problem has a unique minimum.

(2) ∆ < +∞: Notice that the optimality conditions of

β = argmin
βi≥0,i∈I+
βi≤0,i∈I−
βi=0,i/∈I

∥y −XIβI∥22,

are (i) β satisfies the constraints, (ii) if i ∈ I+ (resp i ∈ I−) then [−∇L(β)]i ≤ 0 (resp [−∇L(β)]i ≥
0) and (iii) if βi ̸= 0 then [∇L(β)]i = 0. One can notice that condition (ii) ensures that at each
iteration, for δ ≤ ∆k, sk−1 − δ∇L(βk−1) ∈ [−1, 1] coordinate wise. Also, if L(βk−1) ̸= 0, then a
coordinate of the vector |sk−1 − δ∇L(βk−1)| must necessarily hit 1, this value of δ corresponds to
∆k.

(3) The loss is strictly decreasing: Let Ik−1,± and Ik,± be the equicorrelation sets defined in the
algorithm at step k−1 and k, and βk−1 and βk the solutions of the constrained minimisation problems.
Also, let ik be the newly added coordinate which breaks the constraint at step k (which we assume
to be unique for simplicity). Without loss of generality, assume that sk(ik) = +1. Since the sets
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Ik−1,+ \ (Ik,+ \ {ik}) and Ik−1,− \ Ik,− are (if not empty) only composed of indexes of coordinates
of βk−1 which are equal to 0, one can notice that βk−1 also satisfies the new constraints at step
k. Therefore L(βk) ≤ L(βk−1). Now since [−∇L(βk−1)]ik > 0, from the strict convexity of the
restricted loss on Ik, this means that βk(ik) > 0 (which also means that newly activated coordinate
ik must activate), and therefore βk−1 ̸= βk and L(βk) < L(βk−1).

(4) The algorithm terminates in at most min
(
2d,

∑n
k=0

(
d
k

))
steps: Recall that we showed in

part (1) of the proof that at each iteration k of the algorithm, Ik as at most min(n, d) elements.
Since supp(βk) ⊂ Ik, we have that βk has at most min(n, d) non-zero elements, also recall that we
always have βk = argminβi=0,i/∈supp(βk)

L(β) (we here have unicity of this minimisation problem
following part (1) of the proof). There are hence at most

min(n,d)∑
k=0

(
d

k

)
= min

(
2d,

n∑
k=0

(
d

k

))
such minimisation problems. The loss being strictly decreasing, the algorithm cannot output the same
solution β at two different loops, and the algorithm must terminate in at most min

(
2d,

∑n
k=0

(
d
k

))
iterations by outputting a vector β⋆ such that ∇L(β⋆) = 0, i.e. β⋆ ∈ argminL(β).

(5) The algorithm outputs the minimum ℓ1-norm solution. Let β⋆ be the output of the algorithm
after p iterations. Notice that by the definition of the successive sets Ik,± and of the constraints on the
minimisation problem, we have that at each iteration sk ∈ ∂∥βk∥1. Therefore sp ∈ ∂∥β⋆∥1. Also,
recall from part (1) of the proof that sp ∈ span(x1, . . . , xn) which means that there exists r ∈ Rn

such that sp = X⊤r. Putting the two together we get that X⊤r ∈ ∂∥β⋆∥1, this condition along with
the fact that L(β⋆) = minL(β) are exactly the KKT conditions of arg min

β∈ argminL
∥β∥1.

To put our upperbound on the number of iterations into perspective, the worst-case number of
iterations for the LARS algorithm is (3d + 1)/2 [34]. Hence Algorithm 1 has fewer iterations in the
worst-case setting. Whether an exponential dependency in the dimension is inevitable for Algorithm 1
is unknown and we leave this as future work.

However, when the number of samples is much smaller than the dimension we lose the exponential
dependency. Indeed, for ε := n/d ≤ 1/2, we have the upperbound

∑n
k=0

(
d
k

)
≤ 2H(ε)d where

H(ε) = −ε log2(ε) − (1 − ε) log2(1 − ε) is the binary entropy. Since for ε ≤ 1/2, H(ε) ≤
−2ε log2(ε), we get the upperbound

∑n
k=0

(
d
k

)
≤ 2H(ε)d ≤ ( dn )

2n, which is much better than 2d.

D.2 Proof of Proposition 2

As mentioned several times, for general feature matrices X complex behaviours can occur with
coordinates deactivating and changing sign several times. Here we show that for simple datasets
which have a feature matrix X that satisfy the restricted isometry property (RIP) [14], we can simply
determine the jump times and the saddles as a function of the sparse predictor which we seek to
recover.

The non-realistic but enlightening extreme case of the RIP assumption is to consider that the feature
matrix is such that X⊤X/n = Id. In this case, by letting β⋆ be the unique vector such that
y = ⟨x, β⋆⟩ and assuming that β⋆ = (β⋆

1 , . . . , β
⋆
r , 0, . . . , 0) with |β⋆

1 |> · · · > |β⋆
r |> 0, then the

loss writes L(β) = ∥β − β⋆∥22/2 and one can easily check that Algorithm 1 would terminate in r
loops and output exactly ti =

1
|β⋆

i |
and βi = (β⋆

1 , . . . , β
⋆
i , 0, . . . , 0) for i ≤ r (the case where several

coordinates of β⋆ are stricly equal can also be treated: for example if β⋆
1 = β⋆

2 then the first output of
the algorithm is directly β1 = (β⋆

1 , β
⋆
2 , 0, . . . , 0)).

We now recall the more realistic RIP setting which is an adaptation of the previous observation.
Sparse regression with RIP and gap assumption. (RIP) Assume that there exists an r-sparse
vector β⋆ such that yi = ⟨xi, β

⋆⟩. Furthermore we assume that the feature matrix X ∈ Rn,d satisfies
the 2r-restricted isometry property with constant ε̃ <

√
2− 1 < 1/2: i.e. for all submatrix Xs where

we extract any s ≤ 2r columns of X , the matrix X⊤
s Xs/n of size s × s has all its eigenvalues in

the interval [1− ε̃, 1 + ε̃]. (Gap assumption) Furthermore we assume that the r-sparse vector β⋆
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has coordinates which have a “sufficient gap’. W.l.o.g we write β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0) with

|β⋆
1 |≥ . . . ≥ |β⋆

r |> 0 and we define λ := mini∈[r](|β⋆
i |−|β⋆

i+1|) ≥ 0 which corresponds to the
smallest gap between the entries of |β⋆|. We assume that 5ε̃∥β⋆∥2< λ/2 and we let ε := 5ε̃.

A classic result from compressed sensing (see Candes [13, Theorem 1.2]) is that the 2r-restricted
isometry property with constant

√
2− 1 ensures that the minimum ℓ0-minimisation problem has a

unique r-sparse solution which is β⋆. Furthermore it ensures that the minimum ℓ1-norm solution is
unique and is equal to β⋆. This means that Algorithm 1 will have β⋆ as a final output.

We now recall the result which characterises the outputs of Algorithm 1 when the data satisfies the
previous assumptions.
Proposition 2. Under the restricted isometry property and the gap assumption stated right above,
Algorithm 1 terminates in r-loops and outputs:

β1 = (β1[1], 0, . . . , 0) with β1[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

2 + ε∥β⋆∥]

β2 = (β2[1], β2[2], 0, . . . , 0) with
{

β2[1] ∈ [β⋆
1 − ε∥β⋆∥, β⋆

1 + ε∥β⋆∥]
β2[2] ∈ [β⋆

2 − ε∥β⋆∥, β⋆
2 + ε∥β⋆∥]

...
βr−1 = (βr−1[1], . . . , βr−1[r − 1], 0, . . . , 0) with βr−1[i] ∈ [β⋆

i − ε∥β⋆∥, β⋆
i + ε∥β⋆∥ ]

βr = β⋆ = (β⋆
1 , . . . , β

⋆
r , 0, . . . , 0),

at times t1, . . . , tr such that ti ∈
[

1
|β⋆

i |+ε∥β⋆∥ ,
1

|β⋆
i |−ε∥β⋆∥

]
and where ∥·∥ denotes the ℓ2 norm.

Proof. In all the proof ∥·∥ denotes the ℓ2 norm ∥·∥2. For simplicity we assume that β⋆
i > 0 for all

i ∈ [r], the proof can easily be adapted to the general case. We first define ξ := X⊤X/n− Id. By
the restricted isometry property, for any k ≤ 2r, we have that any k × k square matrix extracted
from ξ which we denote ξkk has its eigenvalues in [−ε̃, ε̃]. It also means that the eigenvalues of
(Ik + ξkk)

−1 − Ik are in [ 1
1+ε̃ − 1, 1

1−ε̃ − 1] ⊂ [−2ε̃, 2ε̃].
We now proceed by induction with the following induction hypothesis:

• βk−1 has its support on its (k− 1) first coordinates with |βk−1[i]− β⋆
i |≤ 5ε̃∥β⋆∥ for i < k

• tk ∈
[

1
β⋆
k+5ε̃∥β⋆∥ ,

1
β⋆
k−5ε̃∥β⋆∥

]
and stk [k] = 1

• stk [i] ∈ [tk(β
⋆
i − 5ε̃∥β⋆∥), tk(β⋆

i + 5ε̃∥β⋆∥)] ⊂ (−1, 1) for i > k

From the recurrence hypothesis, the output of the algorithm at step k is hence βk = argminL(β)
under the constraint β[i] ≥ 0 for i ≤ k and β[i] = 0 otherwise. We first search for the solution of the
minimisation problem without the sign constraint and still (abusively) denote it βk: we will show that
it turns out to satisfy the sign constraint and that it is therefore indeed βk.

In the following, for a vector v, we denote by v[: k] its k first coordinates. Setting the k first
coordinates of the gradient to 0, we get that [X⊤X(βk − β⋆)][:k] = 0, which leads to (Ik + ξkk)βk[:
k] = β⋆[:k] + [ξβ⋆][:k], which gives:

βk[:k] = (Ik + ξkk)
−1(β⋆[:k] + [ξβ⋆][:k])

= β⋆[:k] + [ξβ⋆][:k] + v1

where from the bound on the eigenvalues of (Ik + ξkk)
−1 − Ik and ∥ξβ⋆∥≤ ε̃∥β⋆∥:

∥v1∥ ≤ 2ε̃∥β⋆[:k] + [ξβ⋆][:k])∥
≤ 2ε̃(∥β⋆∥+∥ξβ⋆∥)
≤ 2ε̃(∥β⋆∥+ε̃∥β⋆∥)
≤ 4ε̃∥β⋆∥.

Therefore
βk[:k] = β⋆[:k] + v2
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where v2 = [ξβ⋆][: k] + v1 hence ∥v2∥∞≤ ∥v2∥≤ 5ε̃∥β⋆∥. Notice that from the definition of λ
and the fact that 5ε̃∥β⋆∥< λ/2 we have that βk[:k] ≥ 0 coordinate-wise, hence verifying the sign
constraint. Also note that ∥βk∥≤ ∥β⋆∥+5ε̃∥β⋆∥≤ 4∥β⋆∥.
For t ≥ tk, st = stk − (t − tk)∇L(βk), and [∇L(βk)][: k] = 0 therefore st[: k] = stk [: k]. Now
for i > k, [−∇L(βk)]i = n−1[X⊤X(β⋆ − βk)]i = β⋆

i + [ξ(βk − β⋆)]i. Now since (βk − β⋆) is
r-sparse we have that:

∥ξ(βk − β⋆)∥∞ ≤ ∥ξ(βk − β⋆)∥
≤ ε̃∥βk − β⋆∥
≤ ε̃(∥βk∥+∥β⋆∥)
≤ 5ε̃∥β⋆∥< λ/2, (21)

Now from the fact that st[i] = stk [i] + (t− tk)β
⋆
i + (t− tk)[ξ(βk − β⋆)]i and using the recurrence

hypothesis: stk [i] ∈ [tk(β
⋆
i − 5ε̃∥β⋆∥), tk(β⋆

i + 5ε̃∥β⋆∥)], we get (using the bound Eq. (21))
that st[i] ∈ [t(β⋆

i − 5ε̃∥β⋆∥), t(β⋆
i + 5ε̃∥β⋆∥)]. From the “separation assumption” we have that

5ε̃∥β⋆∥< λ/2 and therefore the next coordinate to activate is necessarily the (k + 1)th at time tk+1

with stk+1
[k + 1] = 1 and:

tk+1 ∈
[ 1

β⋆
k+1 + 5ε̃∥β⋆∥ ,

1

β⋆
k+1 − 5ε̃∥β⋆∥

]
.

This proves the recursion. The algorithm cannot stop before iteration r as β⋆ is the unique minimiser
of L that has at most r non-zero coordinates. But it stops at iteration r as β⋆ is the unique minimiser
of L(β) under the constraints βi ≥ 0 for i ≤ r and βi = 0 otherwise.
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E Proof of Theorem 2 and Proposition 3 through the arc-length
parametrisation

In this section, we explain in more details the arc-length reparametrisation which circumvents the
apparition of discontinuous jumps and leads to the proof of Theorem 2. The main difficulty to show
the convergence stems from the non-continuity of the limit process β̃◦. Therefore we cannot expect
uniform convergence of β̃α towards β̃ as α→ 0. In addition, β̃◦ does not provide any insights into
the path followed between the jumps.

Arc-length parametrisation. The high-level idea is to “slow-down” time when the jumps occur. To
do so we follow the approach from [18, 36] and we consider an arc-length parametrisation of the
path, i.e., we consider τα equal to:

τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

In Proposition 6, we showed that the full path length
∫ +∞
0
∥β̇α

s ∥ds is finite and bounded independently
of α. Therefore τα is a bijection in R≥0. We can then define the following quantities:

t̂ατ = (τα)−1(τ) and β̂α
τ = β̃α

t̂α(τ)
.

By construction, a simple chain rule leads to ˙̂tα(τ) + ∥ ˙̂βα
τ ∥= 1, which means that the speed of (β̂α

τ )τ
is always upperbounded by 1, independently of α. This behaviour is in stark contrast with the process
(β̃α

t )t which has a speed which explodes at the jumps. It presents a major advantage as we can now
use Arzelà-Ascoli’s theorem to extract a converging subsequent. A simple change of variable shows
that the new process satisfies the following equations:

−
∫ τ

0

˙̂tαs∇L(β̂α
s )ds = ∇ϕ̃α(β̂

α
τ ) and ˙̂tατ + ∥ ˙̂βα

τ ∥= 1 (22)

started from β̂α
τ = 0 and t̂0 = 0. The next proposition states the convergence of the rescaled process,

up to a subsequence.

Proposition 8. Let T ≥ 0. For every α > 0, let (t̂α, β̂α) be the solution of Eq. (22). Then, there
exists a subsequence (t̂αk , β̂αk)k∈N and (t̂, β̂) such that as αk → 0 :

(t̂αk , β̂αk)→ (t̂, β̂) in (C0([0, T ],R× Rd), ∥·∥∞) (23)

( ˙̂tαk ,
˙̂
βαk) ⇀ ( ˙̂t,

˙̂
β) in L1[0, T ] (24)

Limiting dynamics. The limits (t̂, β̂) satisfy:

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1 and ˙̂tτ + ∥ ˙̂βτ∥≤ 1 (25)

Heteroclinic orbit. In addition, when β̂τ is such that |β̂τ |⊙∇L(β̂τ ) ̸= 0, we have

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
and ˙̂tτ = 0. (26)

Furthermore, the loss strictly decreases along the heteroclinic orbits and the path length
∫ T

0
∥ ˙̂βτ∥dτ

is upperbounded independently of T .

Proof. Differentiating Eq. (22) and from the Hessian of ϕ̃α we get:

˙̂
βα
τ = − ˙̂tατ (∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ )

= −(1− ∥ ˙̂βα
τ ∥)(∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ ).
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Therefore taking the norm on the right hand side we obtain that

∥ ˙̂βα
τ ∥=

∥(∇2ϕ̃α(β̂
α
τ ))

−1∇L(β̂α
τ )∥

1 + ∥(∇2ϕ̃α(β̂α
τ ))

−1∇L(β̂α
τ )∥

,

and therefore

˙̂
βα
τ = − (∇2ϕ̃α(β̂

α
τ ))

−1∇L(β̂α
τ )

1 + ∥(∇2ϕ̃α(β̂α
τ ))

−1∇L(β̂α
τ )∥

. (27)

Subsequence extraction. By construction Eq. (22) we have ˙̂tατ + ∥ ˙̂βα
τ ∥= 1 , therefore the sequences

( ˙̂tα)α, ( ˙̂βα)α as well as (t̂α)α, (β̂α)α are uniformly bounded on [0, T ]. The Arzelà-Ascoli theorem
yields that, up to a subsequence, there exists (t̂, β̂) such that (t̂αk , β̂αk)→ (t̂, β̂) in (C0([0, T ],R×
Rd), ∥·∥∞). Since ∥ ˙̂βα

τ ∥, ∥ ˙̂tατ ∥≤ 1 we have, applying the Banach–Alaoglu theorem, that up to a new
subsequence

( ˙̂tαk ,
˙̂
βαk)

∗
⇀ ( ˙̂t,

˙̂
β) in L∞(0, T ) (28)

and ∥ ˙̂βτ∥≤ lim infαk
∥ ˙̂βαk

τ ∥≤ 1 and thus ˙̂tτ + ∥ ˙̂βτ∥≤ 1:∫ T

0

∥ ˙̂βτ∥dτ ≤
∫ T

0

lim inf
αk

∥ ˙̂βαk
τ ∥dτ ≤

∫ +∞

0

lim inf
αk

∥ ˙̂βαk
τ ∥dτ ≤ lim inf

αk

∫ +∞

0

∥ ˙̂βαk
τ ∥dτ < C,

where the third inequality is by Fatou’s lemma. Note that since [0, T ] is bounded then it also implies
the weak convergence in any Lp(0, T ), 1 ≤ p <∞. Since (β̂α) converges uniformly on [0, T ], and
∇L is continuous, we have that∇L(β̂α) converges uniformly to∇L(β̂). Since ˙̂tαk ⇀ ˙̂t in L1(0, T ),
passing to the limit in the equation∇ϕ̃α(β̂

α
τ ) = −

∫ τ

0
˙̂tαs∇L(β̂α

s )ds leads to

−
∫ τ

0

˙̂ts∇L(β̂s)ds ∈ ∂∥β̂τ∥1,

due to Lemma 2.

Recall from Eq. (27) and the definition of ϕ̃α that:

˙̂
βα
τ = −

√
β̂α
τ + α4 ⊙∇L(β̂α

τ )

1/ln(1/α) + ∥
√

β̂α
τ + α4 ⊙∇L(β̂α

τ )∥
. (29)

Hence assuming that β̂τ is such that ∥|β̂τ |⊙∇L(β̂τ )∦= 0, we can ensure that ∥|β̂τ ′ |⊙∇L(β̂τ ′)∦= 0

for τ ′ ∈ [τ, τ + ε] and ε small enough. We have then

√
β̂α
τ′+α4⊙∇L(β̂α

τ′ )

1/ln(1/α)+∥
√

β̂α
τ′+α4⊙∇L(β̂α

τ′ )∥
converges

uniformly toward − |β̂τ′ |⊙∇L(β̂τ′ )

∥|β̂τ′ |⊙∇L(β̂τ′ )∥
on [τ, τ + ε]. Using the dominated convergence theorem, we

have
∫ τ+ε

τ

√
β̂α
τ′+α4⊙∇L(β̂α

τ′ )

1/log(1/α)+∥
√

β̂α
τ′+α4⊙∇L(β̂α

τ′ )∥
dτ ′ →

∫ τ+ε

τ
|β̂τ′ |⊙∇L(β̂τ′ )

∥|β̂τ′ |⊙∇L(β̂τ′ )∥
dτ ′. We therefore obtain

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
in L1[0, T ]. Consequently ∥ ˙̂βτ∥= 1 and ˙̂tτ = 0.

Proof that the loss stricly decreases along the heteroclinic orbits.

Assume β̂τ is such that |β̂τ |⊙∇L(β̂τ ) ̸= 0, then the flow follows

˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
Letting γ(τ) = 1

∥|β̂τ |⊙∇L(β̂τ )∥
we get:

dL(β̂τ ) = −γ(τ)
∑
i

|β̂τ (i)|⊙[∇L(β̂τ )]
2
idτ < 0,

because |β̂τ |⊙∇L(β̂τ )
2 ̸= 0.
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Borrowing terminologies from [18], we can distinguish two regimes: when ˙̂
βτ = 0, the system is

sticked to the saddle point. When ˙̂tτ = 0 and ∥ ˙̂βτ∥= 1 the system switches to a viscous slip which
follows the normalised flow Eq. (26). We use the term of heteroclinic orbit as in the dynamical
systems literature since in the weight space (u, v) it corresponds to a path with links two distinct
critical points of the loss F . Since ˙̂tτ = 0, this regime happens instantly for the original t time scale
(i.e. a jump occurs).

From Proposition 8, following the same reasoning as in Section 3, we can show that the rescaled
process converges uniformly to a continuous saddle-to-saddle process where the saddles are linked
by normalized flows.

Theorem 3. Let T > 0. For all subsequences defined in Proposition 8, there exist times 0 = τ ′0 <

τ1 < τ ′1 < · · · < τp < τ ′p < τp+1 = +∞ such that the the iterates (β̂αk
τ )τ converge uniformly on

[0, T ] to the following limit trajectory :

(“Saddle”) β̂τ = βk for τ ∈ [τ ′k, τk+1] where 0 ≤ k ≤ p

(Orbit) ˙̂
βτ = − |β̂τ |⊙∇L(β̂τ )

∥|β̂τ |⊙∇L(β̂τ )∥
for τ ∈ [τk+1, τ

′
k+1] where 0 ≤ k ≤ p− 1

where the saddles (β0 = 0, β1, . . . , βp = β⋆
ℓ1
) are constructed in Algorithm 1. Also, the loss

(L(β̂τ ))τ is constant on the saddles and strictly decreasing on the orbits. Finally, independently of
the chosen subsequence, for k ∈ [p] we have t̂τk = t̂τ ′

k
= tk where the times (tk)k∈[p] are defined

through Algorithm 1.

Proof. Some parts of the proof are slightly technical. To simplify the understanding, we make use of
auxiliary lemmas which are stated in Appendix F. The overall spirit follows the intuitive ideas given
in Section 3 and relies on showing that Eq. (25) can only be satisfied if the iterates visit the saddles
from Algorithm 1.

We let ŝτ := −
∫ τ

0
˙̂ts∇L(β̂s)ds, which is continuous and satisfies ŝτ ∈ ∂∥β̂τ∥1 from Eq. (25).

Let S = {β ∈ Rd, |β|⊙∇L(β) = 0} denote the set of critical points and let (βk, tk, sk) be the
successive values of (β, t, s) which appear in the loops of Algorithm 1.

We do a proof by induction: we start by assuming that the iterates are stuck at the saddle βk−1 at
time τ ≥ τ ′k−1 where t̂τ ′

k−1
= tk−1 and ŝτ ′

k−1
= sk−1 (recurrence hypothesis), we then show that

they can only move at a time τk and follow the normalised flow Eq. (26). We finally show that they
must end up “stuck” at the new critical point βk, validating the recurrence hypothesis.

Proof of the jump time τk such that t̂τk = tk : we set ourselves at time τ ≥ τ ′k−1, stuck at the
saddle βk−1. Let τk := sup{τ, t̂τ ≤ tk}, we have that τk < ∞ from Lemma 3. Note that by
continuity of t̂τ it holds that t̂τk = tk. Now notice that ŝτ = ŝτ ′

k−1
− (t̂τ − t̂τ ′

k−1
)∇L(βk−1) =

sk−1 − (t̂τ − tk−1)∇L(βk−1). We argue that for any ε > 0, we cannot have β̂τ = βk−1 on
(τk, τk + ε). Indeed by the definition of τk and from the algorithmic construction of time tk, it would
lead to |ŝτ (i)|> 1 for some coordinate i ∈ [d], which contradicts Eq. (25). Therefore the iterates
must move at the time τk.

Heterocline leaving βk−1 for τ ∈ [τk, τ
′
k] : contrary to before, our time rescaling enables to capture

what happens during the “jump”. We have shown that for any ε, there exists τε ∈ (τk, τk + ε), such
that β̂τε ̸= βk−1. From Lemma 4, since the saddles are distinct along the flow, we must have that
β̂τε /∈ S for ε small enough. The iterates therefore follow a heterocline flow leaving βk−1 with a
speed of 1 given by Eq. (26). We now define τ ′k := inf{τ > τk,∃ε0 > 0,∀ε ∈ [0, ε0], β̂τ+ε ∈ S}
which corresponds to the time at which the iterates reach a new critical point and stay there for at
least a small time ε0. We have just shown that τ ′k > τk. Now from Proposition 8, the path length of β̂
is finite, and from Lemma 4 the flow visits a finite number of distinct saddles at a speed of 1. These
two arguments put together, we get that τ ′k < +∞ and also β̂τ ′

k+ε = β̂τ ′
k
, ∀ε ∈ [0, ε0]. On another

note, since ˙̂tτ = 0 for τ ∈ [τk, τ
′
k] we have t̂τ ′

k
= t̂τk(= tk) as well as ŝτk = ŝτ ′

k
(= sk).
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Proof of the landing point βk : we now want to find to which saddle β̂τ ′
k
∈ S the iterates have moved

to. To that end, we consider the following sets which also appear in Algorithm 1:
I±,k := {i ∈ {1, . . . , d}, s.t. ŝτ ′

k
(i) = ±1} and Ik = I+,k ∪ I−,k. (30)

The set Ik corresponds to the coordinates of β̂τ ′
k

which “are allowed” (but not obliged) to be activated
(i.e. non-zero). For τ ∈ [τ ′k, τ

′
k + ε0] we have that ŝτ = ŝτ ′

k
− (t̂τ − tk)∇L(β̂τ ′

k
). By continuity of ŝ

and the fact that ŝτ ∈ ∂∥β̂τ ′
k
∥1, the equality translates into:

• if i /∈ Ik, β̂τ ′
k
(i) = 0

• if i ∈ I+,k, then [∇L(β̂τ ′
k
)]i ≥ 0 and β̂τ ′

k
(i) ≥ 0

• if i ∈ I−,k, then [∇L(β̂τ ′
k
)]i ≤ 0 and β̂τ ′

k
(i) ≤ 0

• for i ∈ Ik, if β̂τ ′
k
(i) ̸= 0, then [∇L(β̂τ ′

k
)]i = 0

One can then notice that these conditions exactly correspond to the optimality conditions of the
following constrained minimisation problem:

arg min
βi≥0,i∈Ik,+

βi≤0,i∈Ik,−
βi=0,i/∈Ik

L(β). (31)

We showed in Proposition 7 that the solution to this problem is unique and equal to βk from Algorithm
1. Therefore β̂τ = βk for τ ∈ [τ ′k, τ

′
k + ε0]. It finally remains to show that β̂τ = βk while τ ≤ τk+1,

where τk+1 := sup{τ, t̂τ = tk+1}. For this let τ ∈ [τ ′k, τk+1], notice that for i /∈ Ik, we necessarily
have that β̂τ (i) = βk(i) = 0, otherwise we break the continuity of ŝτ . Similarly, for i ∈ Ik,+, we
necessarily have that β̂τ (i) ≥ 0 and for i ∈ Ik,−, β̂τ (i) ≤ 0 for the same continuity reasons. Now
assume that β̂τ (Ik) ̸= βk(Ik). Then from Lemma 4 and continuity of the flow, ∃τ ′ ∈ (τ ′k, τ) such
that β̂τ ′ /∈ S and there must exist a heterocline flow Eq. (26) starting from βk which passes through
βτ ′ . This is absurd since along this flow the loss strictly decreases, which is in contradiction with the
definition of βk which minimises the problem Eq. (31).

E.1 Proof of Theorem 2

Theorem 3 enables to prove without difficulty Theorem 2 which we recall below. Indeed we can
show that any extracted limit β̂ maps back to the unique discontinuous process β̃◦.
Theorem 2. Let the saddles (β0 = 0, β1, . . . , βp−1, βp = β⋆

ℓ1
) and jump times (t0 = 0, t1, . . . , tp)

be the outputs of Algorithm 1 and let (β̃◦
t )t be the piecewise constant process defined as follows:

(Saddles) β̃◦
t = βk for t ∈ (tk, tk+1) and 0 ≤ k ≤ p, tp+1 = +∞.

The accelerated flow (β̃α
t )t defined in Eq. (9) uniformly converges towards the limiting process (β̃◦

t )t
on any compact subset of R≥0\{t1, . . . , tp}.

Proof. We directly apply Theorem 3, let αk be the subsequence from the theorem. Let ε > 0, for
simplicity we prove the result on [t1 + ε, t2 − ε], all the other compacts easily follow the same line
of proof. Note that since t̂αk(τ ′1)→ t1 and t̂αk(τ2)→ t2, for αk small enough t̂αk(τ ′1) ≤ t1 + ε and
t̂αk(τ2) ≥ t2− ε, by the monotonicity of ταk , this means that for αk small enough, τ ′1 ≤ ταk(t1+ ε)
and τ2 ≥ ταk(t2 − ε). Therefore

sup
t∈[t1+ε,t2−ε]

∥β̃αk
t − β1∥ = sup

t∈[t1+ε,t2−ε]

∥β̂αk(ταk
(t))− β1∥

= sup
τ∈[ταk (t1+ε),ταk (t2−ε)]

∥β̂αk(τ)− β1∥

≤ sup
τ∈[τ ′

1,τ2]

∥β̂αk(τ)− β1∥,

which goes uniformly to 0 following Theorem 3. Since this result is independent of the subsequence
αk, we get the result of Theorem 2.
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E.2 Proof of Proposition 3

We restate and prove Proposition 3 below.

Proposition 3. For all T > tp, the graph of the iterates (β̃α
t )t≤T converges to that of (β̂τ )τ :

dist({β̃α
t }t≤T , {β̂τ}τ≥0) −→

α→0
0 (Hausdorff distance)

Proof. For α small enough, we have that t̂ατ ′
p
≤ tp + ε ≤ T

sup
τ≥0

d(β̂τ , {β̃α
t }t≤T ) = sup

τ≤τ ′
p

d(β̂τ , {β̃α
t }t≤T )

≤ sup
τ≤τ ′

p

∥β̂τ − β̃α
t̂ατ
∥

= sup
τ≤τ ′

p

∥β̂τ − β̂α
τ ∥ −→

α→0
0,

according to Theorem 3.

Similarly:

sup
t≤T

d(β̃α
t , {β̂τ ′}τ ′) = sup

τ≤τα
T

d(β̂α
τ , {β̂τ ′}τ ′)

≤ sup
τ≤τα

T

∥β̂α
τ − β̂τ∥−→

α→0
0,

according to Theorem 3, which concludes the proof.
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F Technical lemmas

The following lemma describes the behaviour of∇ϕ̃α(β
α) as α→ 0 in function of the subdifferen-

tial ∂∥·∥1.

Lemma 2. Let (βα)α>0 such that βα −→
α→0

β ∈ Rd.

• if βi > 0 then [∇ϕ̃α(β
α)]i converges to 1

• if βi < 0 then [∇ϕ̃α(β
α)]i converges to −1.

Moreover if we assume that∇ϕ̃α(β
α) converges to η ∈ Rd, we have that:

• ηi ∈ (−1, 1)⇒ βi = 0

• βi = 0⇒ ηi ∈ [−1, 1].

Overall, assuming that (βα,∇ϕ̃α(β
α)) −→

α→0
(β, η), we can write:

η ∈ ∂∥β∥1.

Proof. We have that

[∇ϕ̃α(β
α)]i =

1

2 ln(1/α)
arcsinh(

βα
i

α2
)

=
1

2 ln(1/α)
ln

(βα
i

α2
+

√
(βα

i )
2

α4
+ 1

)
.

Now assume that βα
i → βi > 0, then [∇ϕ̃α(β

α)]i → 1, if βi < 0 we conclude using that arcsinh is
an odd function. All the claims are simple consequences of this.

The following lemma shows that the extracted limits t̂ as defined in Proposition 8 diverge to∞. This
divergence is crucial as it implies that the rescaled iterates (β̂τ )τ explore the whole trajectory..

Lemma 3. For any extracted limit t̂ as defined in Proposition 8, we have that τ − C ≤ t̂τ where C
is the upperbound on the length of the curves defined in proposition 6.

Proof. Recall that

τα(t) = t+

∫ t

0

∥ ˙̃βα
s ∥ds.

From Proposition 6, the full path length
∫ +∞
0
∥β̇α

s ∥ds is finite and bounded by some constant C
independently of α. Therefore τα is a bijection in R≥0 and we defined t̂ατ = (τα)−1(τ). Furthermore
τα(t) ≤ t+ C leads to t ≤ t̂α(t+ C) and therefore τ − C ≤ t̂α(τ) for all τ ≥ 0. This inequality
still holds for any converging subsequence, which proves the result.

Under a mild additional assumption on the data (see Assumption 2), we showed after the proof of
Proposition 1 in Appendix B that the number of saddles of F is finite. Without this assumption, the
number of saddles is a priori not finite. However the following lemma shows that along the flow of β̂
the number of saddles which can potentially be visited is indeed finite.

Lemma 4. The limiting flow β̂ as defined in Proposition 8 can only visit a finite number of critical
points β ∈ S := {β ∈ Rd, β ⊙∇L(β) = 0} and can visit each one of them at most once.

Proof. Let τ ≥ 0, and assume that β̂τ ∈ S, i.e., we are at a critical point at time τ . From Proposition 1,
we have that

β̂τ ∈ argmin
βi=0 for i/∈supp(β̂τ )

L(β), (32)
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Let us define the sets

I± := {i ∈ {1, . . . , d}, s.t. ŝτ (i) = ±1} and I = I+ ∪ I−.

The set I corresponds to the coordinate of β̂τ which “are allowed” (but not obliged) to be non-zero
since from Eq. (25), supp(β̂τ ) ⊂ I . Now given the fact that the sub-matrix XI = (x̃i)i∈I ∈
Rn×card(I) is full rank (see part (1) of the proof of Proposition 7 for the explanation), the solution of
the minimisation problem (32) is unique and equal to β[ξ] = (X⊤

ξ Xξ)
−1X⊤

ξ y and β[ξC ] = 0 where
ξ = supp(β̂τ ). There are 2d = Card(P ([d])) (where P ([d]) contains all the subsets of [d]) number
of constraints of the form {βi = 0, i /∈ A}, where A ⊂ [d], and β̂τ is the unique solution of one of
them. β̂τ can therefore take at most 2d values (very crude upperbound). There is therefore a finite
number of critical points which can be reached by the flow β̂. Furthermore, from Proposition 8, the
loss is strictly decreasing along the heteroclinic orbits, each of these critical points can therefore be
visited at most once.
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