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Abstract

Understanding the implicit bias of training algorithms is of crucial importance in
order to explain the success of overparametrised neural networks. In this paper, we
study the dynamics of stochastic gradient descent over diagonal linear networks
through its continuous time version, namely stochastic gradient flow. We explicitly
characterise the solution chosen by the stochastic flow and prove that it always
enjoys better generalisation properties than that of gradient flow. Quite surprisingly,
we show that the convergence speed of the training loss controls the magnitude
of the biasing effect: the slower the convergence, the better the bias. To fully
complete our analysis, we provide convergence guarantees for the dynamics. We
also give experimental results which support our theoretical claims. Our findings
highlight the fact that structured noise can induce better generalisation and they
help explain the greater performances of stochastic gradient descent over gradient
descent observed in practice.

1 Introduction

Understanding the performance of neural networks is certainly one of the most thrilling challenges
for the current machine learning community. From the theoretical point of view, progress has been
made in several directions: we have a better functional analysis description of neural networks [3]
and we steadily understand the convergence of training algorithms [29, 10] as well as the role of
initialisation [20, 12]. Yet there remain many unanswered questions. One of which is why do the
currently used training algorithms converge to solutions which generalise well, and this with very
little use of explicit regularisation [39].

To understand this phenomenon, the concept of implicit bias has emerged: if over-fitting is benign,
it must be because the optimisation procedure converges towards some particular global minimum
which enjoys good generalisation properties. Though no explicit regularisation is added, the algorithm
is implicitly selecting a particular solution: this is referred to as the implicit bias of the training
procedure. The implicit regularisation of several algorithms has been studied, the simplest and
most emblematic being that of gradient descent and stochastic gradient descent in the least-squares
framework: they both converge towards the global solution which has the lowest squared distance
from the initialisation. For logistic regression on separable data, Soudry et al. show in the seminal
paper [31] that gradient descent selects the max-margin classifier. This type of result has then been
extended to neural networks and to other frameworks. Overall, characterising the implicit bias of
gradient methods has almost always come down to unveiling mirror-descent like structures which
underlie the algorithms.
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Figure 1: Sparse regression with n = 40, d = 100, ‖β∗`0‖0 = 5, xi ∼ N (0, I) yi = x>i β
∗
`0

. Left:
for initialisation scale α = 0.05, SGD converges towards a solution which generalises better than
GD. Right: for different values of the initialisation scale α, the solution recovered by SGD has better
validation loss than that of GD. The sparsifying effect due to their implicit biases differ by more than
an order of magnitude. See Section 5.1 for the precise experimental setup.

While mostly all of the results focus on gradient descent, it must be pointed out that this full batch
algorithm is not used in practice for neural networks since it does not lead to solutions which
generalise well [23]. Instead, results on stochastic gradient descent, which is widely used and shows
impressive results, are still missing or unsatisfactory. This has certainly to do with the fact that
grasping the nature of the noise induced by the stochasticity of the algorithm is particularly hard: it
mixes properties from the model’s architecture, the data’s distribution and the loss. In our work, by
focusing on simplified neural networks, we answer to the following fundamental questions: do SGD’s
and GD’s implicit bias differ? What is the role of SGD’s noise over the algorithm’s implicit bias?

The simplified neural networks which we consider are diagonal linear neural networks; despite
their simplicity they have become popular since they already enable to grasp the complexity of
more general networks. Indeed, they highlight important aspects of the theoretical concerns of
modern machine learning: the neural tangent kernel regime, the roles of over-parametrisation, of the
initialisation and of the step size. For a regression problem where we assume the existence of an
interpolating solution, we study stochastic gradient descent through its continuous version, namely
stochastic gradient flow (SGF). Though the continuous modelling of SGD has not yet led to many
fruitful results compared to the well studied gradient flow, we believe it is because capturing the
essence of the stochastic noise is particularly difficult. It has generally been done in a non realistic
and over simplified manner, such as considering constant and isotropic noise. In our work, we attach
peculiar attention to the adequate modelling of the noise. Tools from Itô calculus are then leveraged
in order to derive exact formulas, quantitative bounds and interesting interpretations for our problem.

1.1 Main contributions and paper organisation.

In Section 2, we start by introducing the setup of our problem as well as the continuous modelisation
of stochastic gradient descent. Then, in Section 3, we state our main result on the implicit bias of the
stochastic gradient flow. We informally formulate it here and illustrate it in Figure 1:

Theorem 1 (Informal). Stochastic gradient flow over diagonal linear networks converges with high
probability to a zero-loss solution which enjoys better generalisation properties than the one obtained
by gradient flow. Furthermore, the speed of convergence of the training loss controls the magnitude
of the biasing effect: the slower the convergence, the better the bias.

Unlike previous works [14, 36], in addition to characterising the implicit bias effect of SGF, we
also prove the convergence of the iterates towards a zero-loss solution with high-probability. To
accomplish this, we leverage in Section 4 the fact that the iterates follow a stochastic continuous
mirror descent with a time-varying potential. We support our results experimentally and validate our
model in Section 5.
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1.2 Related work

As recalled, implicit bias has a recent history that has been initiated by the seminal work [31] on
max-margin classification with log-loss for a linear setup and separable data. This work has been
extended to other architectures, e.g. multiplicative parametrisations [14], linear networks [22] and
more general homogeneous neural networks [27, 11]. In [36] the authors show that the scale of the
initialisation leads to an interpolation between the neural tangent kernel regime [20, 12] (which is
a linear regression on fixed features) leading to `2 minimum norm solutions and the rich regimes
leading to `1 minimum norm solutions. Note that these works focus on full batch gradient descent (or
flow) and are deeply linked to mirror descent.

While the links between SGD’s stochasticity and generalisation have been looked into in numerous
works [28, 21, 16, 18, 24], no such explicit characterisation of implicit regularisation have ever been
given. It has been empirically observed that SGD often outputs models which generalise better than
GD [23, 21, 16]. One suggested explanation is that SGD is prone to pick flatter solutions than GD
and that bad generalisation solutions are correlated with sharp minima, i.e., with strong curvature,
while good generalisation solutions are correlated with flat minima, i.e., with low curvature [17,
23]. This idea has been further investigated by adopting a random walk on random landscape
modelling [18], by suggesting that SGD’s noise is smoothing the loss landscape, thus eliminating the
sharp minima [24], by considering a dynamical stability perspective [38] or by interpreting SGD as a
diffusion process [16, 21, 8]. Recently, label-noise has been shown to influence the implicit bias of
SGD, by biasing the solution towards the origin for quadratically-parameterized models [15] or by
implicitly regularising the expected squared norm of the gradient of the model with respect to the
weights [5]. Thus, if the notion of implicit bias of GD is fairly well understood both in the cases of
regression and classification, it remains unclear for SGD, and its explicit characterisation is missing.

The linear diagonal neural networks we consider have been studied in the case of gradient descent [33]
and stochastic gradient descent with label noise [15]. In both cases the authors show that this model
has the ability to implicitly bias the training procedure to help retrieve a sparse predictor. The link
between gradient descent and mirror descent for this model has been initiated by [13] and further
exploited by the same author in [37, 34] for its sparse inducing property.

Contrary to the deterministic case, the modelling of stochastic gradient descent as a stochastic
differential equation is quite recent, see [28, 21]. However, as highlighted by [1], early attempts
often suffer from the drawback that they model the noise using a constant covariance matrix. On
the contrary, state dependant noise has now become the legitimate manner for modelling SGD as a
stochastic gradient flow and it is shown in [26] that it can be done consistently. Yet, noise modelling
still remains the principal issue [35] as it influences largely the behaviour of the dynamics [8, 9].

1.3 Notations

For input data (x1, . . . , xn) ∈ (Rd)n and output (y1, . . . , yn) ∈ Rn, we denote respectively X ∈
Rn×d the design matrix whose i-th row is feature xi ∈ Rd and y ∈ Rn the vector of outputs. R∗+
denotes the set of strictly positive real numbers. For p = 1, 2, the `p-norm of x ∈ Rd is ‖x‖pp =∑d
i |xi|p. The operations � will stand for coordinate-wise product between vector: [u� v]i = uivi

and u2 = u� u. For p ∈ N∗, we also define up := u� . . .� u, the p times product of u with itself.
All inequalities between vectors should be understood value by value. For f, g ∈ R, the existence
of C > 0 such that f ≤ Cg and Cg ≤ f will be denoted f ≤ O(g) and Ω(g) ≤ f respectively. We
shall use the symbole Õ when this is true up to log factors. For a vector u ∈ Rd, diag(u) denotes the
d× d diagonal matrix which has its diagonal equal to u. For a matrix M ∈ Rd×d, diag(M) denotes
the vector (M11, . . . ,Mdd) ∈ Rd. The indexed vector β∗ will stand for any β interpolating the data,
i.e. any vector in the affine space {β ∈ Rd s.t, Xβ = Y } of dimension at least d − n. Out of all
these, let β∗`1 = arg min

β∈Rd s.t. Xβ=y

‖β‖1. For z any vector, z∞ or z∞ will always designate of lim
t→∞

zt.

2 Setup and preliminaries

2.1 Architecture and algorithm.

Overparametrised noiseless regression. We consider a linear regression problem with outputs
(y1, . . . , yn) ∈ Rn and inputs (x1, . . . , xn) ∈ (Rd)n. We study an overparametrised setting (n < d)

3



and assume that there exists at least one interpolating parameter β∗ ∈ Rd which perfectly fits the
training set, i.e. yi = 〈β∗, xi〉 for all 1 ≤ i ≤ n. We parametrise the regression vector β as βw with
w ∈ Rp. We will see that though in the end our final models x 7→ 〈βw, x〉 are classical linear models
whatever the parametrisation w 7→ βw, the choice of this parametrisation has crucial consequences
on the solution recovered by the learning algorithms. We study the quadratic loss and the overall loss
is written as:

L(w) = L(βw) :=
1

4n

n∑
i=1

(〈βw, xi〉 − yi)2 =
1

4n

n∑
i=1

〈βw − β∗, xi〉2,

where by abuse of notation we use L(w) = L(βw).

2-layer diagonal linear network. The simplest parametrisation of βw is to consider βw = w
which corresponds to the classical least-squares framework. It is well known that in this case, many
first order methods (GD, SGD, with and without momentum) will converge towards the same solution:
we say that they have the same implicit bias. This is experimentally not the case for neural networks
where SGD has been shown to lead to solutions which have better generalisation properties compared
to GD [23]. To theoretically confirm this observation, we study a simple non-linear parametrisation:
βw = w2

+ − w2
− with w = [w+, w−]> ∈ R2d. We point out that it is 2-positive homogeneous

and that it is equivalent to the parametrisation βu,v = u � v with u, v ∈ Rd. It should be thought
of a simplified linear network of depth 2 (see [36, Section 4] for more details). We consider two
weight vectors w+ and w− (and not only βw = w2) in order to ensure that our final linear predictor
parameter βw can take negative values. For the sake of completeness, the study of diagonal linear
networks of arbitrary depth p ≥ 3 is done in Appendix E.2. Also note that additionally to being a toy
neural model, it has received recent attention for its practical ability to induce sparsity [33, 34, 15] or
to solve phase retrieval problems [37].

Stochastic Gradient Descent. With this quadratic parametrisation, the loss now rewrites as:
L(w) = 1

4n

∑n
i=1〈w2

+ − w2
− − β∗, xi〉2. Note that despite its simplicity, this loss is non con-

vex and its minimisation is non trivial. The algorithm we shall consider is the well known SGD
algorithm, where for a step size γ > 0:

wt+1,+ = wt,+ − γ〈βw − β∗, xit〉 xit � wt,+
wt+1,− = wt,− + γ〈βw − β∗, xit〉 xit � wt,−

where it ∼ Unif(1, n). (1)

It is convenient to rewrite this recursion as

wt+1,± = wt,± − γ∇w±L(wt)± γ diag(wt,±)X>ξit(βt), (2)

where ξit(β) = −
(
〈β − β∗, xit〉eit − Eit

[
〈β − β∗, xit〉eit

])
∈ Rn is a zero-mean multiplicative

noise which vanishes at any global optimum (ei denotes the ith element of the canonical basis). We
point out that all the results we shall give hold for any initialisation such that wt=0,+ = wt=0,− ∈ Rd,
under which we have that βwt=0 = 0. To understand under what conditions the SGD procedure
converges and towards which point it does, we shall consider its continuous counterpart which has
the advantage of leading to clean and intuitive calculations. We highlight the fact that we consider a
bath-size equal to 1 for clarity, however all our analysis holds for mini-batch SGD (with and without
replacement) simply by considering an effective step-size γeff instead of γ, this is clearly explained
in Appendix A.

2.2 Stochastic gradient flow

Continuous time modelling of sequential processes offer a large set of tools, such as derivation, which
come in helpful to understand the dynamics of the processes. This has led to a large part of the recent
literature to consider continuous gradient flow in order and understand the behaviour of gradient
descent on complicated architectures such as neural nets. However, the continuous time modelling
of stochastic gradient descent is more challenging: it requires to add on top of the gradient flow a
diffusion term whose covariance matches the one of SGD. Hence, it is fundamental to understand its
structure and scale.
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Understanding the noise’s structure. As seen in equation (2), evaluated at w±, the stochastic
noise γ diag(w±)X>ξit(w) has two main characteristics which we want to preserve:

• It belongs to span(w± � x1, . . . , w± � xn)

• It has covariance ΣSGD(w±) := γ2 diag(w±)X>Covit(ξit(β))X diag(w±) ∈ Rd×d

It remains to understand the structure of the covariance of ξit which has the following closed form:
Covit(ξit(β)) = 1

n diag(〈β − β∗, xi〉2)1≤i≤n − 1
n2

(
〈β − β∗, xi〉〈β − β∗, xj〉

)
1≤i,j≤n. We identify

the two key facts: (i) it is diagonal at the leading n−1 order and (ii) its trace is linked to the loss
as Varit(‖ξit(β)‖2) = 4

nL(β) + O( 1
n2 ). This leads us in modelling ξit(β)’s covariance matrix as

4
nL(β)In as it preserves these two characteristics 1. Finally this brings us to consider the following
modelling of the overall noise’s structure: ΣSGD(w±) ∼= 4

nγ
2L(w)[diag(w±)X>]⊗2.

Stochastic differentiable equation modelling. Guided by the previous considerations, we study
the following stochastic gradient flow:

dwt,+ = −∇w+
L(wt) dt+ 2

√
γn−1L(wt) wt,+ � [X>dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γn−1L(wt) wt,− � [X>dBt],

(3)

where dBt is a standard Rn Brownian motion. The SDE is a perturbed gradient flow with a diffusion
term that is defined such that its Euler discretisation with step size γ leads to a Markov Chain whose
covariance exactly matches SGD’s noise covariance ΣSGD(w±). We refer to [26] or [25] for the
technical details regarding consistency of such a procedure in the limit of small step sizes. This
stochastic differential equation is the starting point of the analysis.

3 The implicit bias of the stochastic gradient flow

Implicit bias and hyperbolic entropy. To understand the relevance of the main result and how
stochasticity induces a preferable bias, we start by recalling some known results for gradient flow.
In [36] it is shown, assuming global convergence, that the solution selected by the gradient flow
initialised at α ∈ Rd and denoted βα∞ solves a constrained optimisation problem involving the
hyperbolic entropy introduced by [13]:

βα∞ = arg min
β∈Rd s.t. Xβ=y

φα(β) :=
1

4

[ d∑
i=1

βiarcsinh(
βi

2α2
i

)−
√
β2
i + 4α4

i

]
, (4)

Though the hyperbolic entropy function has a non-trivial expression, its principal characteristic is
that it interpolates between the `1 and the `2 norms according to the scale of α. More precisely
for α ∈ R 2: φα(β) ∼

α→0

1
2 ln

(
1
α

)
‖β‖1 and φα(β) =

α→+∞
2α2 + 1

4α2 ‖β‖22 + o(α−2). We refer to

[36, Theorem 2] for more details on the asymptotic analysis. The implicit optimisation problem
(4) therefore highlights the fact that the initialisation scale of the weights controls the shape of the
recovered solution. Small initialisations lead to low `1-norm solutions which are known to induce
good generalisation properties: this is what is often referred to as the rich regime. Large initialisations
lead to low `2-norm solutions: this is referred to as the kernel regime or lazy regime in which the
weights move only very slightly. The dynamics of the gradient flow are then very similar to the one
of kernel linear regression with the kernel depending on the initialisation [20, 12]. Overall, to retrieve
a sparse solution, one should initialise with the smallest α possible. However, as is clearly explained
in [36], it is important to stress out that there is a generalisation / optimisation tradeoff: the point
w = 0 happens to be a saddle point for the loss and a smaller α will lead to a longer training time.

Main result. In the main theorem we show that, for an initialisation scale α, the stochasticity of
SGF biases the flow towards solutions which still minimise the hyperbolic entropy. However, what is
remarkable is that it does so with an effective parameter α∞ which is strictly smaller than α. The
recovered solution therefore minimises an optimisation problem which has better sparsity inducing
properties than that of gradient flow.

1the general case is discussed in Appendix E.1
2If α ∈ R we consider the abuse of notation φα := φα1.
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Theorem 1. For p ≤ 1
2 and w0,± = α ∈ (R∗+)d, let (wt)t≥0 follow the stochastic gradient

flow (3) with step size γ ≤ O
([

ln( 4
p )λmax max{‖β∗`1‖1 ln

( ‖β∗`1‖1
mini α2

i

)
, ‖α‖22}

]−1)
where β∗`1 =

arg min
β∈Rd s.t.Xβ=y

‖β‖1 and λmax is the largest eigenvalue ofX>X/n. Then, with probability at least 1−p:

• (βt)t≥0 converges towards a zero-training error solution βα∞

• the solution βα∞ satisfies

βα∞ = arg min
β∈Rd s.t. Xβ=y

φα∞(β) where α∞ = α� exp

(
−2γ diag

(
X>X

n

)∫ +∞

0

L(βs) ds

)
. (5)

The theorem is three-fold: with high probability and for an explicit choice of constant step size γ,
(i) the flow (βt)t≥0 converges, (ii) its limit βα∞ is an interpolating solution, i.e. Xβα∞ = y , (iii) this
solution minimises the hyperbolic entropy problem with a parameter that depends on the dynamics.
We illustrate these results in Figure 2. Now let us comment further the theorem.

Figure 2: Sparse regression (see Section 5.1 for the detailed experimental setting). Both SGD and
GD are initialised at α = 0.1. 2 different runs of SGD over the training set are performed, they differ
due to the inner stochasticity of the algorithm. Left: GD and SGD both converge towards a global
minimum. Middle and right: for two different trajectories of SGD, the higher the value of the loss
integral at convergence, the better the validation loss. In both cases SGD converges towards a solution
which generalises better than GD. This figure illustrates Theorem 1.

Beneficial implicit bias through effective initialisation. The most remarkable aspect of the result
is that the recovered solution βα∞ minimises the same potential as for gradient flow but with an
effective parameter α∞ which is strictly smaller than α. Hence, the hyperbolic entropy is closer to
the `1 norm compared to the deterministic case, proving a systematic benefit of stochasticity. Note
that this effective parameter is random and controlled by the loss integral

∫ +∞
0

L(βs) ds: the higher
the integral, the smaller the effective initialisation scale. In other words and quite surprisingly, the
slower the loss converges to 0, the “richer” the implicit bias. However, it must be kept in mind
that, as explained in [36], there is a tension between generalisation and optimisation: a longer
training time might improve generalisation but comes at the cost of... a longer training time. Yet it
is clear experimentally that SGD systematically largely wins the trade-off over GD (see Figure 2).
Interestingly, Problem (5) tells us that the implicit bias of SGD initialised at α acts as if we run
GD initialised at α∞ (see Section 5.3). Note that the minimisation problem (5) only makes sense a
posteriori since the quantity α∞ depends on the whole stochastic trajectory. Finally, an interesting
question is whether one can quantify the scale of this beneficial phenomenon, i.e. how small α∞
is compared to α. To answer this, we quantify the scale of the loss integral w.r.t. γ and α (see
Proposition 3) and show under slightly stronger conditions that the relative scale α∞/α decays as
power of α (See Eq. (8) of the main text and Proposition 6 of the appendix for a proof).

Kernel regime. Though it is less our focus, our result still holds as α→ +∞ which corresponds
to the kernel regime. In this regime, we believe that

∫ +∞
0

L(βs) ds →
α→∞

0 (not shown in the paper
but experimentally observed) and hence SGF and GF converge towards the same solution. This is
expected since in the NTK regime, the iterates follow a kernel linear regression for which the bias of
SGF and GF are the same.
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Step size. Note that the convergence of the iterates holds for a constant step size. This is not
illogical since in the overparametrised setting, the noise vanishes at the optimum (see [32] for a
convergence result in the overparametrised least-squares setup). The explicit formula for the γ upper

bound is γ ≤
(

400 ln
(

4
p

)
λmax(X

>X
n ) max

{
‖β∗`1‖1 ln

(√
2
‖β∗`1‖1
mini α2

i

)
, ‖α‖22

})−1

. It has a classical

dependence on λmax(X>X/n) which can be computed, but also on the unknown value of ‖β∗`1‖1.
However in practice we choose the highest value of γ for which the iterates converge. Note that in
practice the weights are often initialised such that ‖α‖22 is roughly equal to 1 and hence it is sensible
to consider ‖α‖22 < ‖β∗`1‖1. In the explicit bound, there is a ln

(
‖β∗`1‖1/mini α

2
i

)−1
factor, we

believe that it is an artefact of our analysis and could be removed. It is hence best to think of the
upperbound on γ to simply be γ ≤ O( 1

λmax‖β∗`1‖1
).

Convergence and proof sketch. Let us put emphasis on the fact that since we deal with a non-
convex problem, neither convergence nor convergence towards a global minimum are obvious. In
most of similar works, convergence of the iterates is assumed [36, 14]. In fact, the hardest and most
technical part of our result is to show the convergence of the flow with high probability: once the
convergence is shown, describing the minimisation problem βα∞ verifies is straightforward. In the
following section we give several properties which constitute the major keys of the theorem’s proof.

4 Links with mirror descent

The aim of this section is to show that the sequence (βt)t≥0 follows a stochastic version of continuous
mirror descent with a time dependent mirror. From this crucial property, we show how the convergence
and implicit bias characterisation follow. Finally, as it is one of the central objects of our main theorem,
we give an estimation of

∫∞
0
L(βs) ds.

4.1 Stochastic continuous mirror descent with time-varying potential

We start by recalling known results on the link between implicit bias and mirror descent. We recall
also convergence guarantees for mirror descent dynamics.

Mirror descent: convergence and implicit bias. For any β0 ∈ Rd and convex potential function
Ψ, consider the mirror descent flow (βt)t which corresponds to d∇Ψ(βt) = −∇L(βt)dt. Though
the convergence of the loss to 0 is straightforward, showing the convergence of the iterates requires
more work and is shown in [4, Theorem 2] for strongly convex potentials. Yet, once the convergence
of the iterates is shown, deriving the implicit minimisation problem is straightforward. We recall
the reasoning here (see Section 3 of [2] for more details): integrating the flow yields ∇Ψ(β∞) −
∇Ψ(β0) = −

∫∞
0
∇L(βs) ds = −4X>

∫∞
0
X(βs − β∞) ds ∈ span(X). This condition, along

with the fact that Xβ∞ = y exactly corresponds to the KKT conditions of the problem:

β∞ = arg min
β∈Rd s.t. Xβ=y

DΨ(β, β0), (6)

where DΨ(β, β0) = Ψ(β)−Ψ(β0)− 〈∇Ψ(β0), β − β0〉 is the Bregman divergence w.r.t. Ψ.

Link with our model. It turns out that these general observations on mirror descent apply to our
framework when (wt)t follows the gradient flow dwt,± = −∇w±L(wt) dt. Indeed it has been shown
in [36] that the corresponding iterates βt = w2

t,+ − w2
t,− follow a mirror descent with potential φα

defined in Eq.(4). Therefore we can apply the previous remarks to obtain the convergence towards
an interpolator3, as well as the associated implicit minimisation problem which in our case can be
rewritten as βα∞ = arg min

β∈Rd s.t. Xβ=y

φα(β) since ∇φα(β0 = 0) = 0.

Stochastic Mirror descent with a time varying potential. To address the problem where (wt)t
follows a stochastic gradient flow instead of a gradient flow, it is natural, as in the deterministic
framework, to see what type of flow (βt)t follows. Because of the noise, we cannot hope to simply

3In our case, φα is not strongly convex so a bit more work is necessary to show the convergence of the
iterates (see Appendix C).
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recover a classical mirror descent. However interestingly the next property shows that it follows a
stochastic mirror-like descent with a geometry that depends on time.
Proposition 1. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(3)
with initialisation w0,± = α ∈ (R∗+)d. Then the corresponding flow (βt)t≥0 follows a “stochastic
continuous mirror descent with time varying potential” defined by:

d∇φαt(βt) = −∇L(βt) dt+
√
γn−1L(βt)X

>dBt, (7)

where αt = α � exp
(
−2γ diag

(
X>X
n

) ∫ t
0
L(βs) ds

)
and φα is the hyperbolic entropy defined

in (4).

Under this form we clearly see that the iterates (βt)t follow a flow which closely resembles that of
mirror descent but with two major differences: (i) the potential φαt changes over time according to the
random quantity

∫ t
0
L(βs) ds, (ii) the flow is perturbed by noise. We highlight the fact that viewing

the dynamics this way has the major advantage of giving a clear roadmap for the proof of Theorem 1:
(i) we can adapt classical mirror-descent results to our framework and construct appropriate Lyapunov
functions to prove the convergence of the flow with high probability to some interpolator βα∞, (ii) we
immediately recover the corresponding minimisation problem as in the deterministic case. Indeed,
integrating Eq.(7) still yields ∇φα∞(βα∞) ∈ span(X) which, along with Xβα∞ = y, are the KKT
conditions of the implicit minimisation problem (5). We emphasise the fact that the structure of the
noise, belonging to span(X), is crucial in order to obtain this minimisation problem. This would for
instance clearly not be true if we considered isotropic noise in the SDE modelling. This highlights
the fact that not every form of noise improves the implicit bias: the shape of the intrinsic SGD noise
is of primal importance [15].

4.2 Convergence and control of
∫∞

0
L(βs) ds

Though it seems easy to derive the implicit minimisation problem (5) from the mirror-like structure
of Eq.(7), it is necessary to ensure that the iterates converge towards an interpolator β∞. This is the
purpose of the following proposition.
Proposition 2 (Convergence of the iterates). Consider the iterates (wt)t≥0 issued from the stochastic
gradient flow (3), initialised at w0,± = α ∈ (R∗+)d. For p ≤ 1

2 and γ such as in Theorem 1, then
with probability at least 1− p, the flow (βt)t converges to an interpolating solution βα∞.

The convergence of the iterates is technical and requires several intermediate results. We start by
considering an appropriate Bregman-type stochastic function with a time-varying potential and show
that it converges with high probability. Leveraging the fact that we are able to bound the iterates βt,
we are able to show that the limit of the function is in fact 0. Owing to the fact that the function we
consider also controls the distance of βt to a particular β∗ we finally get that the iterates converge.

However for the objects (such as α∞) and functions we introduce to be well defined, we need to
guarantee the convergence of

∫∞
0
L(βs)ds. Besides, it is crucial to grasp the scale of this quantity

since it gives the overall scale of α∞. This is done in the following proposition where we lower and
upper bound its value.
Proposition 3. Under the same setting as in Proposition 2 with initialisation w0,± = α1, we have
with probability at least 1− p:

Ω
(
‖β∗`1‖1 ln

(‖β∗`1‖1
α2

))
6
α→0

∫ +∞

0

L(βs) ds 6 O
(

max
{
‖β∗`1‖1 ln

(‖β∗`1‖1
α2

)
, α2d

})
.

We point out that the lower bound is given for small α’s for simplicity but we provide in Lemma 7
(Appendix B.5) a lower bound which holds for all α’s. Note that when γ = 0, which corresponds
to deterministic gradient flow, we can give the exact value for the integral:

∫ +∞
0

L(βs) ds =
1
2Dφα(βα∞, β0) (see Proposition 7 in Appendix C). This matches the scale of the bounds given in
Proposition 3, hence showing the tightness of the result. We focus now on how this translates to the
scale of the effective initialisation w.r.t. α when this latter is small enough. In fact, this lower bound
on the integral of the loss along with a stronger assumption on the boundedness of the iterates lead to

α∞
α

6
α→0

(
α2

‖β∗`1‖1

)ζ
, (8)
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for some ζ > 0. Hence the smaller the initialisation scale α and the greater the benefit of SGD over
GD in terms of implicit bias (see Appendix B.6 for more details).

Again, the proof of this proposition is technical and relies on considering appropriate Lyapunov
functions which highly resemble to Bregman divergences, but which take into account the fact that
the geometry changes over time. These overall decreasing Lyapunov’s enable to bound the iterates
as well as lower and upper bound the integral of the loss. The stochastic integrals which naturally
appear are controlled with high probability using time-uniform concentration of martingales [19].

5 Experiments

5.1 Experimental setup for sparse regression

We consider the following sparse regression setup for our experiments. We choose n = 40, d = 100
and randomly generate a sparse model β∗`0 such that ‖β∗`0‖0 = 5. We generate the features as
xi ∼ N (0, I) and the labels as yi = x>i β

∗
`0

. SGD, GD and the SGF are always initialised using the
same scale α > 0 and it is specified each time. We use the same step size for GD and SGD and choose
it to be the biggest as possible why still ensuring convergence. Note that since the true population
covariance E[xx>] is equal to identity, the quantity ‖βt − β∗`0‖

2
2 corresponds to the validation loss.

5.2 Validation of the SDE model

In this section, we present an experimental validation of the stochastic gradient flow model. In
Figure 3, for the same step size, we run: (i) the trajectory of gradient descent, (ii) 5 trajectories of
stochastic gradient descent that correspond to different realisations of the uniform sampling over
the data, (iii) 5 trajectories of the stochastic gradient flow (its Euler discretisation with dt = γ/10))
corresponding to different realisations of the Brownian. We clearly see (left) that the loss behaves
similarly for SGD and SGF across time. We also see that the validation losses (right) of the iterates
of SGD and SGF have very similar behaviours. This tends to validate our continuous modelling from
Section 2.2.

101 103 105

Iteration t

10−10

10−7

10−4

10−1

Train losses L(βt)

GD

SGDs

SDEs

101 103 105

Iteration t

10−3

10−2

10−1

100

Test losses ||βt − β∗`0 ||22
GD

SGDs

SDEs

Figure 3: Sparse regression (see Section 5.1 for the detailed experimental setup). Left and right: the
training and the validation losses behave very similarly, corroborating the continuous modelling.

5.3 GD and SGD have the same implicit bias, but from different initialisations.

In order to confirm and illustrate the main Theorem 1, we provide the following experiment
which is illustrated Figure 4. We first run GD and SGD with the same step-size and ini-
tialise them both at α1 with α = 0.01. As expected, the solution recovered by SGD gen-
eralises better. Then, using the iterates βSGD

t from the first SGD run, we compute the value
α∞ = α exp(−2γ diag(X>X/n)

∫∞
0
L(βSGD

s )ds) ∈ Rd (the integral is approximated by its dis-
crete time approximation with dt = γ). We then run gradient descent but this time initialised at
w0,± = α∞. According to our main result from Theorem 1, it should approximately (it would be
exact if we ran SGF and GF) converge to the same solution as SGD initialised at α1. This is clearly
observed Figure 4 (right). Also note that SGD and GD (initialised at α∞) seem to have overall very
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similar dynamics, this is not shown by our results and we leave this as future work. However keep in
mind that though the validation losses converge at the same iteration rate, in terms of computation
time, SGD is n times faster.

101 103 105

Iteration t

10−12

10−9

10−6

10−3

100

Train losses L(βt)

GD from α

SGD from α

GD from α∞

101 103 105

Iteration t

10−3

10−1

101
Test losses ||βt − β∗`0 ||22

GD from α

SGD from α

GD from α∞

Figure 4: Sparse regression (see Section 5.1 for the detailed experimental setup). Left and
right: SGD initialised at α1 converges towards the same point as GD initialised at α∞ =
α exp(−2γ diag(X>X/n)

∫∞
0
L(βSGD

s )ds) .

5.4 Doping the implicit bias with label noise

As largely discussed throughout the paper, the effect of the implicit bias is controlled by the conver-
gence speed of the loss: the slower it converges, the sparser the selected solution will be. Hence the
following question: can we leverage this knowledge to dope the implicit bias? We argue in this Section
that the answer to this question is affirmative. Indeed, consider a sequence (δt)t∈N ∈ RN

+ and assume
that we artificially inject some label noise ∆t at time t, say for example ∆t ∼ Unif{2δt,−2δt}
(independently from it). This injected label noise perturbs the SGD recursion as follows:

wt+1,± = wt,± ∓ γ (〈βw − β∗, xit〉+ ∆t) xit � wt,+ , where it ∼ Unif(1, n). (9)
As in Section 2.2, we can derive its related stochastic gradient flow (see Appendix D.1 for more
details):

dwt,± = −∇w±L(wt)dt± 2
√
γn−1(L(wt) + δ2

t ) wt,+ � [X>dBt]. (10)

Assuming that (δt)t≥0 ∈ (R+)R and γ are such that the iterates converge, the corresponding implicit
regularisation minimisation problem is preserved but with a "slowed down" loss: L̃(βt) := L(βt)+δ2

t

and the effective initialisation writes: α̃∞ = α� exp
(
−2γ diag(X

>X
n )

∫ +∞
0

L̃(βs) ds
)

. The label
noise therefore helps recovering a solution which has better sparsity properties. However, it must be
kept in mind that adding too much label noise can significantly slow down the convergence of the
validation loss or even prevent the iterates from converging. Yet, experimental results showing the
impressive effect of label noise are provided Figure 5 in Appendix D.1.

6 Conclusion and Perspectives

In this paper, we have shown the benefit of using stochastic gradient descent over gradient descent
for diagonal linear networks in terms of their implicit bias. Indeed, we prove that stochastic gradient
flow acts as gradient flow but initialised at a smaller scale: this induces a sparser finale iterate. This
effect is controlled by the speed of convergence of the loss. Moreover, we prove the convergence of
the flow and exhibit an interesting link with mirror descent. Fully understanding this novel type of
dynamics could help to grasp the implicit biasing properties of stochastic gradient descent in other
frameworks. It is also natural to ask whether the integral of the loss also controls the difference of
implicit regularisation for more general architectures. It would also be interesting to analyse how this
property adapts to log losses known to lead to max-margin solutions in classification.

Acknowledgements. NF would like to thank Nathan Srebro for introducing him to the question of
SGD’s implicit bias as well as for the stimulating discussions they had during his visit at EPFL.
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Appendix
Organisation of the Appendix. The Appendix is structured as follows. In Section A, we give
more precisions regarding the way we model stochastic gradient descent as a stochastic gradient flow.
Section B.6 is the core of the Appendix as it provides the proof of the theorem in a self-contained
fashion. For the sake of completeness, in Section C we gather the results on the link between
mirror-descent and implicit bias as well as give convergence results in the deterministic case (gradient
flow). In Section D.1, we provide more experiments supporting our results. In Section E.2, we discuss
some extensions of our results ; (E.1) regarding a more general stochastic gradient flow model and in
(E.2) we extend our results to depths p ≥ 3. Finally, Section F provides the technical material needed
for the proofs of our results.

A Details on the SDE modelling

We recall that the SGD recursion writes for t > 1 as:
wt+1,+ = wt,+ − γ〈βw − β∗, xit〉 xit � wt,+
wt+1,− = wt,− + γ〈βw − β∗, xit〉 xit � wt,−

where it ∼ Unif(1, n).

Since the full gradient is ∇w±L(w) = ±
[

1
n

∑n
k=1〈βw − β∗, xk〉 xk

]
� w± ∈ Rd. We can rewrite

the recursion as:

wt+1,± = wt,± − γ∇w±L(wt)∓ γ
[
〈βwt − β∗, xit〉 xit −

1

n

n∑
k=1

〈βwt − β∗, xk〉 xk
]
� wt,±.

Now notice that

〈β − β∗, xit〉 xit −
1

n

n∑
k=1

〈β − β∗, xk〉 xk = X>
(
〈β − β∗, xit〉eit − Eit

[
〈β − β∗, xit〉eit

])
,

where ei is the ith element of the Rn-canonical basis. Let us denote by ξit(β) = −
(
〈β−β∗, xit〉eit−

Eit
[
〈β − β∗, xit〉eit

])
. It is a zero-mean random variable with values in Rn and it can be seen as a

multiplicative noise, i.e., proportional to β − β∗, which vanishes at the optimum. The SGD recursion
then writes as:

wt+1,± = wt,± − γ∇w±L(wt)± γ
[
X>ξit(βt)

]
� wt,±

= wt,± − γ∇w±L(wt)± γ diag(wt,±)X>ξit(βt).

As we are interested in the stochastic differential model of the SGD recursion, let us now compute
the covariance of the SGD noise. We first notice that
Covit [ξit(β)] = Eit [ξit(β)⊗2]

= Eit [(〈β − β∗, xit〉eit)⊗2]− Eit [〈β − β∗, xit〉eit ]⊗2

=
1

n

〈β − β
∗, x1〉2 0

. . . 0
0 〈β − β∗, xn〉2

− 1

n2

(
〈β − β∗, xi〉〈β − β∗, xj〉

)
1≤i,j≤n

=
4

n

L1(β) 0
. . . 0

0 Ln(β)

− 1

n2

(
〈β − β∗, xi〉〈β − β∗, xj〉

)
1≤i,j≤n

where Li(β) = 1
4 〈β − β∗, xi〉2 is the individual loss of the observation xi, such that L(β) =

1
n

∑n
i=1 Li(β).

Thus, the covariance satisfies the relation Covit [ξit(β)] = 4
n diag(Li(β))1≤i≤n +O( 1

n2 ). From this
expression we can obtain a good model for Covit [ξit(β)]. First, we neglect the second term of order
1/n2. Then, we assume that all partial losses are approximately uniformly equal to their mean: i.e.
for any i, Li(β) ∼= Eit [Lit(β)] (the general case is discussed Appendix E.1). Hence,

Covit [ξit(β)] ∼=
4

n
diag

( 1

n

∑
i

Li(β)
)

=
4

n
L(β)In.
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The overall SGD’s noise structure is then captured by

Σ
SGD

(w±) := γ2 diag(w±)X>Covit [ξit(β)]X diag(w±)

∼=
4

n
γ2L(β)[diag(w±)X>]⊗2.

This leads us in considering the following SDE:

dwt,+ = −∇w+
L(wt) dt+ 2

√
γn−1L(wt) wt,+ � [X>dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γn−1L(wt) wt,− � [X>dBt],

since its Euler discretisation with step size γ is :

wt+1,± = wt,± − γ∇w±L(wt)± 2
√
γn−1L(wt) wt,± � [X>εt],

where εt ∼ N (0,
√
γIn). This corresponds to a Markov-Chain whose noise covariance is equal to

ΣSGD .

Remark on mini-batch SGD. This analysis can easily be extended to a batch size larger than 1.
Indeed, using a mini-batch sampled with replacement of size b only changes the noise covariance
up to a multiplicative constant as: Covit [ξ

b
it

(β)] = 1
bCovit [ξ

b′=1
it

(β)]. The associated SDE, for a
step size γ, is therefore dwt,± = −∇w±L(wt) dt± 2

√
γb−1n−1L(wt) wt,± � [X>dBt]. Hence, it

the same SDE as for a batch-size equal to 1 but with an effective step-size γeff = γ/b (hence larger
step-sizes can be used, as expected). The exact same reasoning can be done for mini-batch without
replacement and our analysis would hold this time with: γeff = γ(n− b)/((n− 1)b) . Note that all
the results in our paper therefore hold for mini-batch SGD by considering the effective step-size γeff

instead of γ.

B Proofs of the main results

This section contains all the proofs of the main results. It is self contained as we recall each time the
propositions we prove. In subsection B.1, we derive the mirror-descent-like flow which the iterates
follow as in Proposition 1 of the main text. Then, we upper bound the loss integral in subsection B.2.
This leads us in proving the convergence of the iterates towards an interpolator in subsection B.3.
Equipped with these results we prove the main result of the paper (Theorem 1) in subsection B.4.
Finally, to complete the proof of Proposition 3 of the main text we derive a lower bound of the loss in
subsection B.5.

For the sake of easy reading, we adopt the following notations in this section: we denote by
X̄ := X/

√
n, and λmax := λmax(X̄>X̄).

B.1 Proof of Proposition 1

In order to prove Proposition 1, we introduce the following lemma:
Lemma 1. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(3) with
initialisation w0,± = α ∈ (R∗+)d. Then we have the following implicit closed form expression for βt:

βt = 2α2
t � sinh(2X̄>ηt), (11)

where ηt = −
∫ t

0
X̄(βs − β∗) ds + 2

√
γ
∫ t

0

√
L(βs)dBs ∈ Rn and αt = α � exp

(
−

2γ diag(X̄>X̄)
∫ t

0
L(βs)ds

)
.

Note that this is not an explicit closed form for βt since the right hand side depends on (βs)0≤s≤t.

Proof. Recall that the SDE we consider writes as:

dwt,± = −∇w±L(wt) dt± 2
√
γn−1L(wt) wt,± � [X>dBt]

= ±
(
− [X̄>r(wt)]� wt,± dt+ 2

√
γL(wt) wt,± � [X̄>dBt]

)
,
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where r(w) = X̄(w2
+ − w2

− − β∗) = X̄(βw − β∗) ∈ Rn are the (normalised) rests.

It turns out that there is an implicit closed form solution to this SDE. Indeed deriving the Itô formula
on ln(wt,±) gives the following integral expression:

wt,± = wt=0,± � exp(±X̄>
[
−
∫ t

0

r(ws) ds+ 2
√
γ

∫ t

0

√
L(ws) dBs

]
)� exp(−2γ diag(X̄>X̄)

∫ t

0

L(ws) ds)

= αt � exp(±X̄>ηt).

Since β = w2
+ − w2

−, we get:

βt = α2
t �

(
exp(+2X̄>ηt)− exp(−2X̄>ηt)

)
= 2α2

t � sinh(+2X̄>ηt).

For clarity we recall the statement of Proposition 1.

Proposition 1. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow in Eq.(3)
with initialisation w0,± = α ∈ (R∗+)d. Then the corresponding flow (βt)t≥0 follows a “stochastic
continuous mirror descent with time varying potential” defined by:

d∇φαt(βt) = −∇L(βt) dt+
√
γn−1L(βt)X

>dBt, (7)

where αt = α � exp
(
−2γ diag

(
X>X
n

) ∫ t
0
L(βs) ds

)
and φα is the hyperbolic entropy defined

in (4).

Proof. The results immediately follows from Lemma 1. Indeed, inverting the implicit equation on βt,
Eq. (11), we have,

arcsinh
( βt

2α2
t

)
= 2X>ηt = −2X̄>

∫ t

0

X̄(βs − β∗) ds+ 4
√
γX̄>

∫ t

0

√
L(βs)dBs.

Hence,

d arcsinh
( βt

2α2
t

)
= −2X̄>X̄(βs − β∗) dt+ 4

√
γX̄>

√
L(βt)dBt

= −4∇L(βt) dt+ 4
√
γL(βt)X̄

>dBt.

Noticing that∇φα(β) = 1
4arcsinh( β

2α2 ) concludes the proof.

B.2 Upperbound of the integral of the loss

This section contains several technical arguments that permit us to derive the upperbound of the
integral of the loss [Proposition 3, right side]. Let us try to highlight the key features of this proof. First,
as for classical mirror descent, we define a Lyapunov function that resembles a Bregman divergence
plus a necessary control term [Eq. (12)]. Then, we fix a high-probability event on which we have
a control of the Brownian diffusion term [Eq. (13)]. This gives an equation involving a weighted
integral of the loss. After lower bounding this weight to access directly the loss integral [Lemma 4],
we show that the iterates themselves are in fact bounded [Lemma 3]. We finally conclude the proof in
Proposition 4.

Notations and standard calculations. Let us introduce some notations that are important through-
out the proofs. We consider the hyperbolic entropy φα(β) as a function of two variables
(y, z) 7→ φ(y, z) evaluated at the point (β, α2) ∈ Rd × Rd. With a slight abuse of notation,
we denote by ∇βφ(β, α2) ∈ Rd, the gradient with respect to the first vector evaluated in (β, α2),
and ∇zφ(β, α2) ∈ Rd, the gradient with respect to the second variable evaluated in (β, α2). Let us
also define the process (ξt)t>0, as the vector ξt :=

√
β2
t + 4α4

t ∈ Rd, for all t > 0. For the sake of
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clarity, we recall here the expression of the hyperbolic entropy as well as its derivatives: we have
φ(β, α2) = 1

4

∑d
i=1 βi arcsinh( βi

2α2
i
)−

√
β2
i + 4α4

i , and

∇βφ(β, α2) =
1

4
arcsinh

(
β

2α2

)
, ∇zφ(β, α2) = − 1

4α2

√
β2 + 4α4 ∈ Rd as well as,

∇2
β,βφ(β, α2) =

1

4
diag

[
1√

β2
i + 4α2

i

]
i

∈ Rd×d.

A first Lyapunov function. In this subsection we shall consider the following (stochastic) Lya-
punov function:

Vt := −φαt(βt) + 〈∇φαt(βt), βt − β∗`1〉+ γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diag(X̄>X̄)〉. (12)

This Lyapunov resembles to a Bregman divergence with respect to the hyperbolic entropy. The
added term is however required to have a proper control on its decrease. Just as in the deterministic
framework, we want to show that the Lyapunov is decreasing, i.e. it has a negative derivative. With
this aim, we compute its Îto derivative dVt in the following lemma.
Lemma 2. For all t > 0, Vt verifies the following equation:

Vt = V0 − 2

∫ t

0

L(βs)
(

1− 1

2
γ〈diag(X̄>X̄), ξs + |β∗`1 |〉

)
ds+

∫ t

0

√
γL(βs)〈X>dBs, βs − β∗`1〉.

Proof. To derive the formula for the Lyapunov Vt, we compute its derivatives dVt thanks to
Itô formula and then integrate it with respect to the time. Let us stress that as Vt is a func-
tion of βt and αt we need both their full Itô decomposition. For αt, as we know that αt =

α� exp
(
−2γ diag(X̄>X̄)

∫ t
0
L(ws)ds

)
, we have dαt = −2γ diag(X̄>X̄)L(wt)αtdt. For βt, we

only need the noise compound of the Itô decomposition. Let us denote by b(βwt) the drift in the Itô
decomposition of βt4, we have,

dβt = dw2
t,+ − dw2

t,−

= b(βwt)dt+ 4
√
γL(βt)(wt,+ � wt,+ �

[
X̄>dBt

]
+ wt,− � wt,− �

[
X̄>dBt

]
)

= b(βwt)dt+ 4
√
γL(βt) ξt �

[
X̄>dBt

]
.

From this expression, we deduce the matrix of its quadratic variations d〈βt〉qv =
[
d〈βit , β

j
t 〉
]
ij

=

16γL(βt)(X̄
>X̄)� (ξtξ

>
t ) ∈ Rd×d.

We are now equipped to apply the Itô formula on Vt. Indeed, it is clear that φ is a C2 function of
(β, α), hence,

dVt = −
[
〈∇βφ(βt, α

2
t ),dβt〉+ 〈∇zφ(βt, α

2
t ),d

[
α2
t

]
〉+

1

2
Tr
[
∇2
β,βφ(βt, α

2
t )d〈βt〉

]]
+ d

[
〈∇βφ(βt, α

2
t ), βt − β∗`1〉

]
+ γL(βt)〈|β∗`1 |,diag(X̄>X̄)〉dt.

The fifth term is explicit. Let us treat the first four terms separately:

First term. This term cancels with a compound of the fourth term.

Second term. We apply simply the chain rule for this term as αt does not have any quadratic variation:

〈∇zφ(βt, α
2
t ),d

[
α2
t

]
〉 =

〈
− ξt

4α2
t

, 2αt � dαt

〉
= γL(βt)

〈
ξt,diag(X̄>X̄)

〉
dt.

Third term. We directly see that

1

2
Tr
[
∇2
β,βφ(βt, α

2
t )d〈βt〉

]
=

1

2
Tr

[
1

4
diag

(
1

ξt

)
· 4γL(βt)X̄

>X̄ � (ξtξ
>
t )

]
dt = 2γL(βt)〈ξt,diag(X̄>X̄)〉dt.

4It can be computed but its precise formula is not needed.
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Fourth term. We apply Itô formula once again to get:

d
[
〈∇βφ(βt, α

2
t ), βt − β∗`1〉

]
= 〈d

[
∇βφ(βt, α

2
t )
]
, βt − β∗`1〉+ 〈∇βφ(βt, α

2
t ),dβt〉+ Tr

[
d〈∇βφ(βt, α

2
t ), βt〉vq

]
,

and thanks to Eq. (7), we have an expression for the first and last term, giving

d
[
〈∇βφ(βt, α

2
t ), βt − β∗`1〉

]
= −〈∇L(βt), βt − β∗`1〉dt+ 2

√
γL(βt)〈X̄>dBt, βt − β∗`1〉+ 〈∇βφ(βt, α

2
t ),dβt〉

+ 4γL(βt)〈ξt,diag(X̄>X̄)〉dt.

Final expression. Let us gather the four expressions to get dVt. We remark that the terms
〈∇βφ(βt, α

2
t ),dβt〉 cancels (from first and fourth terms) and since 〈∇βL(βt), βt − β∗`1〉 = 2L(βt),

dVt = −
[
γL(βt)

〈
ξt,diag(X̄>X̄)

〉
dt+ 2γL(βt)〈ξt,diag(X̄>X̄)〉dt

]
− 2L(βt)

+
√
γL(βt)〈X̄>dBt, βt − β∗`1〉+ 4γL(βt)〈ξt,diag(X̄>X̄)〉dt+ γL(βt)〈|β∗`1 |,diag(X̄>X̄)〉dt.

And finally, we have the expression:

dVt = −2L(βt) + γL(βt)
〈
ξt,diag(X̄>X̄)

〉
dt+ γL(βt)〈|β∗`1 |,diag(X̄>X̄)〉dt

+
√
γL(βt)〈X̄>dBt, βt − β∗`1〉.

Integrating this equation between 0 and t concludes the proof.

Control of the martingale term and definition of A. Lemma 2 shows that in order to control Vt,
we need to control the local martingale St =

√
γ
∫ t

0

√
L(βs)〈X̄>dBs, βs − β∗`1〉. In fact, it is

expected that the deviation of St from its quadratic variation is very small: this is a concentration
property of local martingales similar to the Bernstein inequality for discrete ones [6]. To do so,

let us fix p < 1/2 and we define two parameters: a := max{‖β∗`1‖1 ln(
√

2
‖β∗`1‖1
minα2

i
), ‖α‖22} and

b := 1
2 ln(4/p)a−1. The reason behind the precise value of a will appear clearly in the proof of

Lemmas 3 and 4. These parameters being fixed, we can define the event:

A = {∀t ≥ 0, |St| ≤ a+ 2bγλmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗`1‖
2
1)ds}. (13)

From Lemma 9, we know that P(A) ≥ 1− 2 exp(−2ab) = 1− p
2 . Note that p is a free parameter

that can be chosen as small as we want.

From now on and until the end of the Section, we place ourselves on the event A, that is, all
(in)equalities between random variables should be considered pointwise for any ω ∈ A. To
make it clear, we will recall from time to time laconically this fact by writing, “on A”.

From Lemma 2, we deduce the following inequalities,

Vt − V0 ≤ −2

∫ t

0

L(βs)(1−
1

2
γ〈diag(X̄>X̄), ξs + |β∗`1 |〉)ds+ 2bγλmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗`1‖
2
1)ds+ a

≤ −2

∫ t

0

L(βs)(1−
1

2
γ〈diag(X̄>X̄), ξs + |β∗`1 |〉 − bγλmax(‖βs‖21 + ‖β∗`1‖

2
1)ds+ a.

Hence, we have the following control on Vt with respect to a weighted loss integral:

Vt − V0 ≤ −2

∫ t

0

L(βs)Usds+ a, (14)

where Ut := 1 − γ
2

[
〈diag(X̄>X̄), ξt + C|β∗`1 |〉 + 2bλmax(‖βt‖21 + ‖β∗`1‖

2
1)
]
≤ 1. The following

lemma show that as long as Ut stays positive, the iterates stay bounded.

Lemma 3. Let us place ourselves on the event A. Let τ > 0. Assume (Ut)0≤t≤τ is positive. Then
for all t 6 τ we have the following explicit upper bound on both ‖βt‖1 and ‖ξt‖1,

‖βt‖1 ≤ ‖ξt‖1 ≤ 18 max{‖β∗`1‖1 ln(
√

2
‖β∗`1‖1
minα2

i

), ‖α‖22}.
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Proof. Let t ≤ τ . Remember that α(t) = α � exp
(
− 2γ

( ∫ t
0
L(ws)ds

)
diag(X̄>X̄)

)
∈ Rd.

Since Vt ≤ V0 − 2
∫ t

0
L(βs)U(s)ds + a and since by assumption U(s) ≥ 0 for all s ≤ t, we

immediately get that Vt ≤ V0 +a = −φα(0) +a = 1
2‖α‖

2
2 +a. Notice furthermore that−φαt(βt) +

〈∇φαt(βt), βt − β∗`1〉 = 1
4‖ξt‖1 −

1
4 〈arcsinh βt

2α2
t
, β∗`1〉. Hence, we have:

‖ξt‖1 = −4φαt(βt) + 4〈∇φαt(βt), βt − β∗`1〉+ 〈arcsinh
βt

2α2
t

, β∗`1〉

= 4Vt − 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diag(X̄>X̄)〉+ 〈arcsinh
βt

2α2
t

, β∗`1〉

≤ 2‖α‖22 + 4a+ 〈arcsinh
βt

2α2
t

, β∗`1〉 − 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diag(X̄>X̄)〉.

We now use the fact that arcsinh(x) ≤ ln(2(x + 1)) and that |x| + |y| ≤
√

2
√
x2 + y2 for all

x, y ≥ 0 .

‖ξt‖1 ≤ 2‖α‖22 + 4a+
∑
i

|β∗i | ln
(
|βi(t)|+ 2αi(t)

2

αi(t)2

)
− 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diag(X̄>X̄)〉

≤ 2‖α‖22 + 4a+
∑
i

|β∗i | ln

(
√

2

√
|βi(t)|2 + 4αi(t)4

minα2
i

)
−
∑
i

|β∗i | ln
(

exp
(
− 4γ

∫ t

0

L(βs)dsdiag(X̄>X̄)
))

− 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diag(X̄>X̄)〉.

Since the last two terms cancel and for all i,
√
|βi(t)|2 + 4αi(t)4 6 ‖ξ‖1, we have

‖ξt‖1 ≤ 2‖α‖22 + 4a+ ‖β∗`1‖1 ln

(√
2
‖ξt‖1

minα2
i

)
.

To obtain the explicit upperbound we use Lemma 10 with A = 2
√

2‖α‖2
minα2

i
+ 4a

√
2

minα2
i

and B =
√

2‖β∗`1‖1
minα2

i

since the condition onA,B are satisfied as A
B +ln(B) ≥ 2‖α‖22

‖β∗`1‖1
+ln(

√
2
‖β∗`1‖1
minα2

i
) ≥ 1+ln(

√
8d) ≥ 2,

as soon as d ≥ 3. Hence,

‖βt‖1 ≤ ‖ξt‖1 ≤
5

2

(
2‖α‖22 + 4a+ ‖β∗`1‖1 ln

(√
2‖β∗`1‖1
minα2

i

))

≤ 3‖β∗`1‖1 ln

(√
2
‖β∗`1‖1
minα2

i

)
+ 5‖α‖22 + 10a

≤ 18 max{‖β∗`1‖1 ln(
√

2
‖β∗`1‖1
minα2

i

), ‖α‖22},

where in the last inequality we plug in the value of a. This concludes the proof of the lemma.

Recall that we defined Ut = 1− γ
2

[
〈diag(X̄>X̄), ξt + |β∗`1 |〉+ 2bλmax(‖βt‖21 + ‖β∗`1‖

2
1)
]
. We now

show that in fact (Ut)t is always lower bounded by a strictly positive constant. Hence, the result of
Lemma 3 is valid at any time t > 0.

Lemma 4. On A, let us fix γ ≤ [400λmax ln( 4
p ) max{‖β∗`1‖1 ln(

√
2‖β∗`1‖1
minα2

i
), ‖α‖22}]−1. Recall that

Ut = 1− γ
2

[
〈diag(X̄>X̄), ξt + |β∗`1 |〉+ 2bλmax(‖βt‖21 + ‖β∗`1‖

2
1)
]
, then for all t ≥ 0,

Ut ≥
1

2
.
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Proof. Let us define the stopping time τ = inf{t ≥ 0 such that U(t) ≤ 1
2}. Note that

U0 = 1− γ

2

[
〈diag(X̄>X̄), 2α2 + |β∗`1 |〉+ 2bλmax‖β∗`1‖

2
1)
]

≥ 1− γ

2
λmax

[
2‖α‖22 + ‖β∗`1‖1 + 2b‖β∗`1‖

2
1)

≥ 1− 2γλmaxa ln(
4

p
)

>
1

2
,

where the last inequality comes from the upperbound on γ. Since Ut is continuous we have that
τ > 0. Assume that τ < +∞, by definition of the stopping time, for t ≤ τ : U(t) ≥ 0 and we can
apply Lemma 3 at time τ :

‖βτ‖1 ≤ ‖ξτ‖1 ≤ 18 max{‖β∗`1‖1 ln
(√

2
‖β∗`1‖1
minα2

i

)
, ‖α‖22}.

Therefore:

Uτ = 1− γ

2

[
〈diag(X̄>X̄), ξτ + |β∗`1 |〉+ 2bλmax(‖βτ‖21 + ‖β∗`1‖

2
1)
]

≥ 1− γ

2
λmax

[
‖ξτ‖1 + ‖β∗`1‖1 + 2b(‖βτ‖21 + ‖β∗`1‖

2
1)
]

≥ 1− γ

2
λmax

[
18 max{‖β∗`1‖1 ln

(√2‖β∗`1‖1
minα2

i

)
, ‖α‖22}

+ 2 · 182 · bmax{‖β∗`1‖
2
1 ln2

(√2‖β∗`1‖1
minα2

i

)
, ‖α‖42}

]
.

Since b = 1
2 ln( 4

p ) max{‖β∗`1‖1 ln(
√

2‖β∗`1‖1
minα2

i
), ‖α‖22}−1 we get that:

Uτ ≥ 1− γ

2
λmax ln(

4

p
) max{‖β∗`1‖1 ln

(√2‖β∗`1‖1
minα2

i

)
, ‖α‖22}[18 + 182]

≥ 1− 175 ln(
4

p
)γλmax max{‖β∗`1‖1 ln

(√2‖β∗`1‖1
minα2

i

)
, ‖α‖22}

>
1

2
,

where the last inequality comes from the choice of γ.

This is inconsistent since Uτ = 1
2 . Hence τ = +∞ and thus Ut ≥ 1/2 for all t.

From the result of Lemma 4, with Equation (14), we obtain:∫ t

0

L(βs)ds ≤ V0 − Vt + a ≤ −Vt + 2 max{‖β∗`1‖1 ln
(√2‖β∗`1‖1

minα2
i

)
, ‖α‖22}. (15)

Hence it remains to lower bound Vt in order to get the convergence of the integral of the loss.

Lemma 5. OnA, let γ be set as in Lemma 3, for all t > 0, we have the following lower bound on Vt:

Vt ≥ −
‖β∗`1‖1

4
ln
( 18

√
2

minα2
i

max

{
‖β∗`1‖1 ln

(√
2
‖β∗`1‖1
minα2

i

)
, ‖α‖22

})
.
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Proof. We follow exactly the same proof as for upperbounding the iterates.

4Vt =
∑
i

√
β2
i + 4αi(t)4 − 〈arcsinh

βt
2α2

t

, β∗`1〉+ 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diagH〉

≥ ‖ξt‖1 −
∑
i

|β∗i | ln
(
|βi(t)|+ 2αi(t)

2

αi(t)2

)
+ 4γ

∫ t

0

L(βs)ds 〈|β∗`1 |,diagH〉

≥ ‖ξt‖1 − ‖β∗`1‖1 ln
(√

2
‖ξt‖1

minα2
i

)
≥ −‖β∗`1‖1 ln

(√
2
‖ξt‖1

minα2
i

)
≥ −‖β∗`1‖1 ln

( 18
√

2

minα2
i

max

{
‖β∗`1‖1 ln

(√
2
‖β∗`1‖1
minα2

i

)
, ‖α‖22

})
.

Hence (Vt)t≥0 is lowerbounded and we can derive an upper bound on the loss integral to show the
right part of Proposition 3. We recall it here in the following proposition.
Proposition 4. On A, let γ be set as in Lemma 3, we have the following upper bound on the loss
integral:

∀t > 0,

∫ t

0

L(βs)ds ≤ Õ
(

max

{
‖β∗`1‖1 ln

( ‖β∗`1‖1
minα2

i

)
, ‖α‖22

})
.

As a consequence, the integral
∫∞

0
L(βs)ds converges.

Proof. From Equation (15), we have that∫ t

0

L(βs)ds ≤ −Vt + 2 max{‖β∗`1‖1 ln
(√2‖β∗`1‖1

minα2
i

)
, ‖α‖22},

and thanks to the lower bound on Vt from Lemma 5, it yields,∫ t

0

L(βs)ds ≤
‖β∗`1‖1

4
ln
( 18

√
2

minα2
i

max

{
‖β∗`1‖1 ln

(√
2
‖β∗`1‖1
minα2

i

)
, ‖α‖22

})
+ 2 max{‖β∗`1‖1 ln

(√2‖β∗`1‖1
minα2

i

)
, ‖α‖22},

hence the integral
∫∞

0
L(βs)ds converges and we have furthermore the Õ bound of the proposition.

B.3 Proof of the convergence of the iterates: Proposition 2

In this subsection we prove the convergence of the iterates which corresponds to Proposition 2 of the
main text. For the sake of completeness, we recall this fact in the following lemma.

Lemma 6. On A, let γ ≤ [400λmax ln( 4
p ) max{‖β∗`1‖1 ln(

√
2‖β∗`1‖1
minα2

i
), ‖α‖22}]−1. The iterates

(βt)t≥0 converge to an interpolator βα∞, i.e. such that L(βα∞) = 0.

Proof. Consider the following Bregman divergence style function for any interpolator β∗ :

Wt = φα∞(β∗)− φαt(βt) + 〈∇φαt(βt), βt − β∗〉,

where α∞ = α exp
(
− 2γ

( ∫∞
0
L(βs)ds

)
diag(X̄>X̄)

)
> 0 is well defined on A as a result of

Proposition 4. The exact same computations as in Lemma 2 lead to:

Wt = W0 − 2

∫ t

0

L(βs)ds+ 〈diag(X̄>X̄), γ

∫ t

0

L(βs)ξsds〉+
√
γ

∫ t

0

√
L(βs)〈X>dBs, βs − β∗〉.

Note that:

•
∫ t

0
L(βs)ds converges from Proposition 4.
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•
∫ t

0
‖L(βs)ξs‖1ds ≤ maxs≥0(‖ξs‖1)

∫ t
0
L(βs)ds < ∞ from Proposition 4. Hence∫ t

0
L(βs)ξsds is absolutely convergent, hence converges.

•
∫ t

0

√
L(βs)〈X>dBs, βs − β∗〉 has a quadratic variation equal to 4

∫ t
0
L(βs)

2ds and
4
∫ t

0
L(βs)

2ds ≤ 2λmax

∫ t
0
L(βs)(‖βs‖22 + ‖β∗‖21)ds. This implies that the quadratic

variation converges. Hence we obtain the convergence 5 of the Brownian integral∫ t
0

√
L(βs)〈X>dBs, βs − β∗〉.

Overall we get thatWt converges for all choice of interpolator β∗. Now note that since
∫∞

0
L(βs)ds <

+∞ we can extract a subsequence such that L(βφ(t)) →
t→∞

0. Since (βt)t is bounded (Lemmas 3

and 4), so is (βφ(t))t and we can extract a new subsequence which converges. Let βα∞ denote the limit:
βφ2(t) −→

t→∞
βα∞ where φ2 is the double extraction. Since L(βφ(t)) →

t→∞
0 so does L(βφ2(t)) →

t→∞
0.

By continuity of the loss we have that βα∞ is an interpolator. Now notice that since the Lyapunov Wt

with the choice β∗ = β∞ converges and that Wφ2(t) →
t→∞

0 we get that Wt →
t→∞

0.

Furthermore:

Wt = φα∞(βα∞)− φαt(βt) + 〈∇φαt(βt), βt − βα∞〉
≥ φαt(βα∞)− φαt(βt) + 〈∇φαt(βt), βt − βα∞〉
= Dφαt

(βα∞, βt)

≥ 0

where the first inequality is because α 7→ φα(β) is decreasing and αt ≥ α∞. Therefore
Dφαt

(βα∞, βt)→ 0. Finally, since:

∇2φαt(βt) = diag(
1√

βi(t)2 + 4α4
t (i)

)i

≥ diag(
1√

maxs{βi(s)2}+ 4α4
)i

≥ diag(
1√

maxs{‖β(s)‖21}+ 4α4
)i

≥ µId,

for some µ since the iterates are bounded. Therefore for all t ≥ 0, φαt is µ-strongly convex on
some convex set in which the iterates βs stay in. Which means that: Dφαt

(βα∞, βt) ≥
µ
2 ‖βt − β

α
∞‖22.

Hence βt → βα∞.

Lemma 6 along with the fact that the event A has probability at least 1 − p
2 (see Lemma 9 and

paragraph around 13) concludes the proof of Proposition 2.

B.4 Proof of Theorem 1

We are now equipped to prove the main result of the paper. For clarity we recall the statement of the
theorem here.

Theorem 1. For p ≤ 1
2 and w0,± = α ∈ (R∗+)d, let (wt)t≥0 follow the stochastic gradient

flow (3) with step size γ ≤ O
([

ln( 4
p )λmax max{‖β∗`1‖1 ln

( ‖β∗`1‖1
mini α2

i

)
, ‖α‖22}

]−1)
where β∗`1 =

arg min
β∈Rd s.t.Xβ=y

‖β‖1 and λmax is the largest eigenvalue ofX>X/n. Then, with probability at least 1−p:

• (βt)t≥0 converges towards a zero-training error solution βα∞
5See for example Theorem 5 of https://almostsuremath.com/2010/04/01/

continuous-local-martingales/ for a proof of this fact. For the moment we did not find a pre-
cise reference of this standard fact in the classical [30].
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• the solution βα∞ satisfies

βα∞ = arg min
β∈Rd s.t. Xβ=y

φα∞(β) where α∞ = α� exp

(
−2γ diag

(
X>X

n

)∫ +∞

0

L(βs) ds

)
. (5)

Proof. Recall first that on A, Lemma 6 implies that the iterates converge towards a zero-training
error we denote by βα∞. From Proposition 1 we also have that:

d∇φαt(βt) = −∇L(βt) dt+
√
γL(βt)X̄

>dBt, (16)

where αt = α � exp
(
−2γ diag

(
X̄>X̄

) ∫ t
0
L(βs) ds

)
and φα is the hyperbolic entropy defined

in (4). Since the quantity
∫∞

0
L(βs) ds is well defined on A (Proposition 4), we can integrate (16)

from t = 0 to t = ∞ which leads to ∇φα∞(βα∞) ∈ span(X). This condition, along with the fact
that Xβα∞ = y, exactly corresponds to the KKT conditions of the implicit minimisation problem (5).
From Lemma 9, the fact that the event A has probability at least 1− p concludes the proof.

B.5 Lower bound on
∫
L(βs)ds and proof of Proposition 3

Similarly to what has been done in subsection B.2, in order to lower bound the loss integral, we
need a (different) control on the deviation of the local martingale St. We choose â := Wα

0 /2 and
b̂ := 1

2 ln(4/p)â−1 so that once again âb̂ = 1
2 ln(4/p). We refer to Lemma 7 for the definition of

Wα
0 . Now that these parameters are fixed, consider the new event:

B = {∀t ≥ 0, |St| ≤ â+ 2b̂γλmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗`1‖
2
1)ds}

In this entire subsection we shall put ourselves on the intersectionA∩B which occurs with probability
P(A ∩ B) ≥ 1− (P(AC) + P(BC)) ≥ 1− p. Furthermore since the goal of this section is to obtain
an idea of the dependency on α of the integral of the loss as α goes to 0, we shall consider the
initialisations α = α1, therefore for now on α is a positive scalar. Note that with this convention
‖α‖22 = α2d.

Notice that the quantity γ
∫ +∞

0
L(βs)ds, through α∞, controls the magnitude of the sparse-inducing

effect. In the following lemma we show that this quantity is lower bounded by a quantity which
is strictly increasing with γ. This recommends to pick the largest γ (as long as the iterates
converge). This fact is also observed in practice.

Lemma 7. On A ∩ B, let γ ≤ [400λmax ln( 4
p ) max{‖β∗`1‖1 ln(

√
2‖β∗`1‖1
α2 ), α2d}]−1,

γ

∫ +∞

0

L(βs)ds ≥
Wα

0

4

γ

1 + γ M
Wα

0

,

whereWα
0 = min

β s.t Xβ=Y
φα(β)−φα(0) andM =

[
325λmax ln( 4

p ) max{‖β∗`1‖
2
1 ln2(

√
2‖β∗`1‖1
α2 ), α4d2}].

Proof. According to Lemma 6, the flow converges to an interpolator βα∞. We consider the same
Lyapunov as before:

Wt = φα∞(βα∞)− φαt(βt) + 〈∇φαt(βt), βt − βα∞〉,

which is such that, following the same computations as in Lemma 2:

2

∫ t

0

L(βs)ds = W0 −Wt + γ〈diag(X̄>X̄),

∫ t

0

L(βs)ξsds〉+ St

≥W0 −Wt + St,

where St =
∫ t

0

√
γL(βs)〈X>dBs, βs − β∗`1〉.
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Now since we put ourselves on B:

2

∫ ∞
0

L(βs)ds ≥W0 − â− 2b̂γλmax

∫ +∞

0

L(βs)(‖βs‖21 + ‖β∗`1‖
2
1)ds

≥W0 − â− 2b̂γλmax(182 + 1) max
(
‖β∗`1‖

2
1 ln2

(√
2
‖β∗`1‖1
α2

)
, α4d2

)∫ +∞

0

L(βs)ds

≥W0 − â− 2γb̂M ln(4/p)−1

∫ +∞

0

L(βs)ds,

where the second inequality comes from Lemma 3 (which is still valid since we are on the event A)

and M =
[
325 ln(4/p)λmax max(‖β∗`1‖

2
1 ln2(

√
2
‖β∗`1‖1
α2 ), α4d2)

]
. Hence, we can lowerbound the

integral as ∫ +∞

0

L(βs)ds ≥
W0 − â

2 + 2γb̂M ln( 4
p )−1

.

Importantly W0 = φα∞(β∞)− φα(0) depends on β∞ and is therefore stochastic. However, since
for all β ∈ Rd, α 7→ φ(β, α2) is decreasing and α∞ ≤ α, we obtain:

W0 = φα∞(β∞)− φα(0)

≥ φα(β∞)− φα(0)

≥ φα(β∗α)− φα(0) := Wα
0 ,

where β∗α = argmin
β s.t Xβ=Y

φ(β, α2). Therefore, we control the integral of the loss as

∫ +∞

0

L(βs)ds ≥
Wα

0 − â
2 + 2γb̂M ln( 4

p )−1

We now plug in the values â =
Wα

0

2 and b̂ = 1
Wα

0
ln( 4

p ):

γ

∫ +∞

0

L(βs)ds ≥
Wα

0

4

γ

1 + γ M
Wα

0

.

To complete our understanding of the dependency of the integral of the loss in terms of α and β∗`1
we need to know the dependency of Wα

0 in α. The following lemma does so. We consider the limit
α→ 0 which corresponds to the rich regime we are interested in.

Lemma 8. OnA∩B, let γ ≤ [400λmax ln( 4
p ) max{‖β∗`1‖1 ln(

√
2‖β∗`1‖1
α2 ), α2d}]−1, then for α small

enough: ∫ +∞

0

L(βs) ds >
1

8
‖β∗`1‖1 ln

(‖β∗`1‖1
α2

)
.

Proof. Applying Lemma 11, for all β ∈ Rd , φα(β)− φα(0) ≥ 1
4

∑
i max

{
0, |βi| ln |βi|2α2

}
. There-

fore,

Wα
0 ≥

1

4

∑
i

|β∗α,i| ln
|β∗α,i|
2α2

.

Note that β∗α = argmin
β s.t Xβ=Y

φα(β) and β∗`1 = argmin
β s.t Xβ=Y

‖β‖1. From Theorem 2 of [36]: ‖β∗α‖1 −→
α→0

‖β∗`1‖1 which leads to: ∑
i

|β∗α,i| ln
|β∗α,i|
2α2

∼
α→0
‖β∗`1‖1 ln

‖β∗`1‖1
α2

.
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and Wα
0 >
α→0

1
4‖β

∗
`1
‖1 ln

(‖β∗`1‖1
α2

)
. Finally, for α small enough, from the upperbound on γ, the value

of M and the lower bound on Wα
0 :

γ
M

Wα
0

≤
α→0

1,

which along with Lemma 7 concludes the proof.

Therefore through this lemma we see that by picking the biggest step-size which ensures convergence,
we have a dependency of the integral of the loss as ln 1

α .

Now we are equipped to prove Proposition 3. We recall it here to be self-contained.
Proposition 3. Under the same setting as in Proposition 2 with initialisation w0,± = α1, we have
with probability at least 1− p:

Ω
(
‖β∗`1‖1 ln

(‖β∗`1‖1
α2

))
6
α→0

∫ +∞

0

L(βs) ds 6 O
(

max
{
‖β∗`1‖1 ln

(‖β∗`1‖1
α2

)
, α2d

})
.

Proof. Let us place ourselves on the event A ∩ B. Let us recall that P(A ∩ B) ≥ 1 − (P(AC) +
P(BC)) ≥ 1− p, where the last inequality results from the definitions of A and B and Lemma 9. As
this event is included in A, the right inequality of the proof corresponds exactly to the Proposition 4
of Appendix B.2. The proof of left inequality of the proposition comes from Lemma 8.

In the final proposition of this subsection, we give the scale of α∞ we obtain thanks to our analysis.
Indeed though we know that in all case α∞ < α, we would like to quantitatively know how much
smaller the effective initialisation is in order to have an idea of the gain of SGD over GD (in terms of
implicit bias).
Proposition 5. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow (3), initialised
at w0,± = α1 ∈ (R∗+)d. Let p ≤ 1

2 and γ matching the upperbound in Theorem 1, i.e. γ =

[400λmax ln( 4
p ) max{‖β∗`1‖1 ln(

√
2‖β∗`1‖1
α2d ), α2d}]−1, then with probability at least 1− p and for α

small enough:

α∞
α
≤ exp

(
− 1

1600 ln( 4
p )

diag(X
>X
n )

λmax

)
.

Proof. The fact that α∞ = α exp
(
−2γ diag

(
X>X
n

) ∫ +∞
0

L(βs) ds
)

along with the lower bound
from Lemma 8 and the value of γ gives the result.

This result tends to show that the overall gain of SGD over GD is only by a constant factor

exp(− 1
1600 ln( 4

p )

diag(X
>X
n )

λmax
) < 1. We believe that our analysis is not tight and that the gain is

in fact more consequent, this is explained in the following subsection.

B.6 Scale of α∞ when assuming that the iterates are bounded independently of α.

In this subsection we explain why we believe that our analysis lacks of tightness. In Lemma 3 there
is a dependency in ln( 1

α ) in the upperbound of the `1 norm of the iterates. We believe that this
dependency is an artifact of our analysis and that the true bound is independent of α, this is also what
is observed in practice. This is the reason why we formulate the following assumption:
Boundedness assumption. On A, ‖βt‖1 ≤ ‖ξt‖1 ≤ max{‖β∗`1‖1, α

2d} for all t ≥ 0.

Under this assumption, we obtain convergence of the iterates towards an interpolating solution under
a weaker constraint on γ (bigger step-sizes can be used while still ensuring convergence) as well
as a much better upperbound on the scale of α∞. The aim of the following result is to give the
relevant scale of how small is α∞ w.r.t. α. Hence, for the sake of clarity, we will assume that
diag(X>X/n) ∼ λmax1 (which is true for sub-gaussian inputs with high probability). We also fix
p = 0.01 and drop all the numerical constants under some universal constant ζ > 0.
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Proposition 6. Consider the iterates (wt)t≥0 issued from the stochastic gradient flow (3), initialised
at w0,± = α1 ∈ (R∗+)d. Assume boundedness of the iterates and γ = Θ

(
max{‖β∗`1‖1, α

2d}−1
)
,

then with probability at least 0.99, the iterates (βt)t≥0 converge towards an interpolating solution
βα∞ = arg min

β∈Rd s.t. Xβ=y

φα∞(β). Furthermore, for α small enough, there exists ζ > 0 such that:

α∞
α
≤

(
α2

‖β∗`1‖1

)ζ
.

Proof. As said earlier, we fix p = 0.01. Then, by following the proof of Lemma 4, and using the
boundedness assumption instead of Lemma 3, one obtains that for γ ≤ O

(
max{‖β∗`1‖1, α

2d}−1
)

(as mentioned the precise numerical constants are dropped for simplicity) then Ut ≥ 1
2 for all t ≥ 0.

The results of Lemma 5, Proposition 4, Lemma 6 and therefore Theorem 1 then still hold with
probability 0.99 but with the weaker condition that γ ≤ O

(
max{‖β∗`1‖1, α

2d}−1
)
.

For the upperbound on α∞, we follow the exact same steps as in Appendix B.5. Indeed Lemma 7
now gives, for γ ≤ O

(
(λmax max{‖β∗`1‖1, α

2d})−1
)
:

γ

∫ +∞

0

L(βs)ds ≥
Wα

0

4

γ

1 + γ M
Wα

0

,

where M = Θ
(
λmax max{‖β∗`1‖

2
1, α

4d2}
)
. Plugging in the maximum value of γ, i.e. γ =

Θ
(
(λmax max{‖β∗`1‖1, α

2d})−1
)
: we have that γ M

Wα
0
−→
α→0

0 and for α small enough γWα
0 ≥

Ω
(
λ−1

max ln
(‖β∗`1‖1

α2

))
. Therefore for α small enough:

γ

∫ +∞

0

L(βs)ds ≥ Ω

(
λ−1

max ln

(‖β∗`1‖1
α2

))
Plugging this inequality into the definition of α∞ and assuming that diag(X>X/n) ∼ λmax1 leads
to:

α∞ = α exp

(
−2 diag

(
X>X

n

)
γ

∫ +∞

0

L(βs) ds

)
≤ α

(
α2

‖β∗`1‖1

)Ω
(

1
)
.

This concludes the proof of the Proposition.

This upperbound is significantly better than that of Proposition 5: the smaller the initialisation scale
α and the greater the benefit of SGD over GD in terms of implicit bias. More precisely, Proposition 6
shows that the benefit scales as a power law with respect to the initialization α.

C Deterministic framework

In this section we recall some known results concerning the implicit bias of deterministic mirror
descent as well as give convergence guarantees. In the previous section, the stochasticity of the flow
made the analysis much more involved. In contrast, the analysis is straightforward in the deterministic
setting and we believe this simple case can serve as a warmup to gain further intuition. Note that even
though these results are known independently, we did not find a clear reference gathering them. See
for example [4] for the convergence of the iterates towards an interpolator and [14] for the associated
implicit minimisation problem.
Proposition 7. For any convex loss L such that there exists at least one zero-error interpolator, let
Ψ : Rd → R be a strongly convex and twice differentiable function which we call potential. For any
initialisation β0 ∈ Rd, consider the mirror descent flow (βt)t:

d∇Ψ(βt) = −∇L(βt)dt. (17)
Then the iterates (βt)t converge to an interpolator β∞ which satisfies:

β∞ = arg min
β∈Rd

DΨ(β, β0) such that Xβ = y, (18)

where DΨ(β, β0) = Ψ(β)−Ψ(β0)− 〈∇Ψ(β0), β − β0〉 is the Bregman divergence w.r.t. Ψ.
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Proof. We divide the proof into three steps.

First step: the loss goes to 0.

Note that:
d

dt
L(βt) = −〈∇L(βt), β̇t〉

= −〈[∇2Ψ(βt)]
−1∇L(βt),∇L(βt)〉

≤ 0,

where the inequality is by convexity of the potential Ψ. Hence the loss is decreasing. Now consider
the Bregman divergence between an arbitrary interpolator β∗ and βt:

DΨ(β∗, βt) = Ψ(β∗)−Ψ(βt)− 〈∇Ψ(βt), β
∗ − βt〉 ≥ 0.

which is such that:
d

dt
DΨ(β∗, βt) = 〈 d

dt
∇Ψ(βt), βt − β∗〉

= −〈∇L(βt), βt − β∗〉
≤ −L(βt) (19)
≤ 0

where the first inequality is by the convexity of the loss. Therefore:

L(βt) ≤
1

t

∫ t

0

L(βs) ds

≤ DΨ(β∗, β0)−DΨ(β∗, βt)

t

≤ DΨ(β∗, β0)

t
−→
t→+∞

0.

Hence the loss converges to 0.

Second step: the iterates converge towards an interpolator β∞.

Since d
dtDΨ(β∗, βt) ≤ 0, we have that whatever the interpolator β∗, DΨ(β∗, βt) is decreasing over

the trajectory. Since it is a positive quantity we get that it converges. Moreover Ψ is µ-strongly
convex which means that we also have ‖βt − β∗‖22 ≤ 2

µDΨ(β∗, βt). The flow (βt)t is therefore
bounded and we can extract a convergent subsequence: let β∞ be such that βφ(t) −→

t→∞
β∞. Since

from the first step L(βt) → 0, by unicity of the limit L(βφ(t)) also converges to 0, and we get by
continuity of L that β∞ is an interpolator. This means that (a) DΨ(β∞, βt) converges and (b) it
converges towards the same limit as DΨ(β∞, βφ(t)) which is 0. Finally:

0 ≤ ‖βt − β∞‖22 ≤
2

µ
DΨ(β∞, βt) −→

t→∞
0,

and therefore βt converges towards the interpolator β∞.

Third step: implicit bias.

Note that:

∇Ψ(βt)−∇Ψ(β0) = −
∫ t

0

∇L(βs) ds

= −X>
∫ t

0

(Xβs − y) ds ∈ span(X).

Therefore: ∇Ψ(β∞)−∇Ψ(β0) ∈ span(X) and Xβ∞ = y, which are exactly the KKT conditions
of the minimisation problem:

min
β∈Rd

DΨ(β, β0) such that Xβ = y.
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Remark on the loss integral. We can also show that the integral of the loss converges. Indeed from
inequality 19 with β∗ = β∞, we immediately get that

∫∞
0
L(βs)ds ≤ DΨ(β∞, β0). Furthermore,

when L is the square loss L(β) = 1
2 (β − β∗)>H(β − β∗), then inequality 19 becomes the equality

d
dtDΨ(β∗, βt) = −2L(βt) and hence

∫∞
0
L(βs)ds = 1

2DΨ(β∞, β0).

In our framework, for the deterministic case, we cannot simply apply this result with φα, indeed it is
not strongly convex over Rd. However following the exact same proof as in Lemma 3 and Lemma 4
but in the deterministic case (which is easier since we do not need to use martingale concentration
inequalities), we can show that the iterates βt are bounded. Using Proposition 7 but on a convex set
in which the iterates stay and over which φα is strongly convex (as done in Lemma 6 ) leads to the
convergence of the iterates.

D Experiments

In the following section we consider the same experimental setup as in Section 5.1, which we recall
here for clarity. We consider n = 40, d = 100 and randomly generate a sparse model β∗`0 such
that ‖β∗`0‖0 = 5. We generate the features as xi ∼ N (0, I) and the labels as yi = x>i β

∗
`0

. We use
the same step size for GD and SGD and choose it to be the biggest as possible while still ensuring
convergence. Note that since the true population covariance E[xx>] is equal to identity, the quantity
‖βt − β∗`0‖

2
2 corresponds to the validation loss.

D.1 Doping the implicit bias using label noise: experiments

We consider the label noise setting discussed in Section 5.4: for a sequence (δt)t∈N ∈ R+, assume
that we artificially inject some label noise ∆t at time t, say for example ∆t ∼ unif{2δt,−2δt} and
independently from it (other type of label noise can of course be considered, but we consider here
this one for simplicity). This injected label noise perturbs the SGD recursion as follows:

wt+1,± = wt,± ∓ γ (〈βw − β∗, xit〉+ ∆t) xit � wt,+ , where it ∼ unif(1, n). (20)

Using the same notations and following the same derivations as in Appendix A, we can rewrite the
recursion as:

wt+1,± = wt,± − γ∇w±L(wt)± γ diag(wt,±)X>[ξit(βt) + ∆teit ].

Since ∆t is zero-mean and independent of it we get:

Covit [ξit(β) + ∆teit ] = Eit [ξit(β)⊗2] + E[∆2
te
⊗2
it

]

= Eit [ξit(β)⊗2] +
4δ2
t

n
In.

Now following the same reasoning as in Appendix A, it is natural to consider the following SDE:

dwt,± = −∇w±L(wt)dt± 2
√
γn−1(L(wt) + δ2

t ) wt,+ � [X>dBt].

Let L̃(βt) = L(βt)+δ2
t be the "slowed down" loss. Following the same computations as for Lemma 1

we obtain that:

βt = 2α̃2
t � sinh(2X̄>η̃t),

where η̃t = −
∫ t

0
X̄(βs − β∗) ds + 2

√
γ
∫ t

0

√
L̃(βs)dBs ∈ Rn and αt = α � exp

(
−

2γ diag(X̄>X̄)
∫ t

0
L̃(βs)ds

)
. And following the proof of Proposition 1:

d∇φαt(βt) = −∇L(βt) dt+

√
γn−1L̃(βt)X

>dBt. (21)

Assuming that (δt)t≥0 ∈ (R+)R and γ are such that the iterates converge (here we do not show
under which conditions we have convergence and leave this as future work), the corresponding
implicit regularisation minimisation problem is preserved but with an effective initialisation: α̃∞ =
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α� exp
(
−2γ diag(X

>X
n )

∫ +∞
0

L̃(βs) ds
)

which takes into account the slowed down loss L̃(βt) =

L(βt) + δ2
t . Since it is reasonable to consider that α̃∞ < α∞, the label noise therefore helps to

recover a solution which has better sparsity properties.

We experimentally validate the advantage of adding label noise by choosing the sequence δt = 1 if
t ≤ 103 and δt = 0 if t > 103. The results are illustrated Figure 5. Note that the training loss is
heavily slowed down, however the recovered solution at iteration t = 106 is much better than that of
SGD, and it has not even converged yet. However, it must be kept in mind that adding too much label
noise can significantly slow down the convergence of the validation loss or even prevent the iterates
from converging.

Figure 5: Sparse regression (see Section 5.1 for the detailed experimental setting), illustration of
the benefits of using label noise. All experiments are initialised at α = 0.01. Left: The use of label
noise slows down the convergence of the effective training loss L̃. Middle and right: the value of the
integral of the slowed down loss L̃ is much higher for the recursion with label noise, leading to a
solution which generalises much better.

E Extensions

We introduce two extensions of our results: subsection E.1 extends our results for a very general
stochastic gradient flow model and subsection E.2 discuss them in the depth p ≥ 3 case.

E.1 Towards a more general SDE modelling

Recall from the SDE modelling of Appendix A that Covit [ξit(β)] = 4
n diag(Li(β))1≤i≤n +O( 1

n2 ).
If we assume n large enough we can neglect the second order term of order 1/n2:

Covit [ξit(β)] ∼=
4

n
diag(Li(β))1≤i≤n.

Assume we do not consider that Li(β) ∼ L(β), then the overall SGD noise structure is captured by

ΣSGD(w±) := γ2 diag(w±)X>Covit [ξit(β)]X diag(w±)

∼=
4

n
γ2[diag(w±)X> diag(

√
Li(β))]⊗2.

This leads us in considering the following SDE:

dwt,+ = −∇w+L(wt) dt+ 2
√
γ wt,+ � [X̄> diag(

√
Li(β))dBt]

dwt,− = −∇w−L(wt) dt− 2
√
γ wt,− � [X̄> diag(

√
Li(β))dBt].

(22)

As previously, this SDE admits an implicit integral formulation (multiplication must be understood
component-wise):

wt,± = wt=0,± � exp(±X̄>
[
−
∫ t

0

r(ws) ds+ 2
√
γ

∫ t

0

diag(
√
Li(ws)) dBs

]
)

� exp(−2γ diag(X̄>
∫ t

0

diag(Li(ws)) dsX̄))

= αt � exp(±X̄>ηt),
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where ηt = −
∫ t

0
X̄(βs − β∗) ds + 2

√
γ
∫ t

0
diag(

√
Li(ws)) dBs ∈ Rn and αt = α �

exp(−2γ diag(X̄>
∫ t

0
diag(Li(ws)) dsX̄)). Since β = w2

+ − w2
−, we get:

βt = α2
t �

(
exp(+2X̄>ηt)− exp(−2X̄>ηt)

)
= 2α2

t � sinh(+2X̄>ηt).

And we obtain the following mirror-type descent flow:

d∇φαt(βt) = −∇L(βt) dt+
√
γX̄> diag(

√
Li(βt)) dBt.

Assuming convergence of the iterates and of αt (we do not show the convergence, though we think
the proof could straightforwardly be adapted following Appendix B ), the corresponding minimisation
problem is:

βα∞ = arg min
β∈Rd s.t. Xβ=y

φα∞(β) where α∞ = α� exp(−2γ diag(X̄>
∫ ∞

0

diag(Li(βs)) ds X̄)).

Note that the main result of the paper is very similar, the difference relies in:

• the kth coordinate of diag(X̄> diag(Li(βs)) X̄) is Eit [Lit(βs)(x
(k)
it

)2]

• the kth coordinate of L(βs) diag(X̄>X̄) is Eit [Lit(βs)]Eit [(x
(k)
it

)2]

E.2 Higher order models: the cases of depth p > 2

Until now, we have focused on a 2-homogeneous parametrisation of the estimator. A legitimate
question is how the implicit bias changes as we go to a higher degree of homogeneity. In terms
of networks architecture, this corresponds to increasing the depth of the neural networks. Let
us fix p > 3 with the new parametrisation βw = wp+ − wp−, the loss of our new model writes:
L(w) = 1

4n

∑n
i=1〈w

p
+−w

p
−−β∗, xi〉2. As previously, we want to consider the stochastic differential

equation related to stochastic gradient descent on the above loss. With the same modelling as in
Section 2.2, stochastic gradient flow writes:

dwt,± = −∇w±L(wt)dt± 2
√
γn−1L(βt) diag(wp−1

t,± )X>dBt, (23)
where Bt is a standard Brownian motion in Rn. We would like to put emphasis that, unlike the
2-depth model, we do not provide a dynamical analysis enabling convergence proof and control of
interesting quantities. Here, the aim is to show how our framework naturally extends to general depth
and how the convergence speed of the loss still seems to controls the effect of the stochastic flow
biasing. Contrary to the 2-depth case, the potential cannot be defined in close form, but we still
have the following explicit expression, φpα,±(β) =

∑d
i=1 ψ

p
α,±(βi), where ψpα,± =

∫
[hpα,±]−1 is a

primitive of the unique inverse of hpα,±(z) := (α2−p
+ −z)−

p
p−2 −(α2−p

− +z)−
p
p−2 in (−α2−p

− , α2−p
+ ).

In the following theorem we characterize the implicit bias of the stochastic gradient flow when applied
with higher order models.
Theorem. Initialise the stochastic gradient flow with w0 = α1 ∈ R2d. If we assume that the flow
(βt)t≥0 converges almost surely towards a zero-training error solution βα,p∞ , and that the quantities∫∞

0
L(βs)w

p−2
s,± ds and

∫∞
0
L(βs)ds exist a.s., then the limit satisfies

β∞,p = arg min
β s.t Xβ=y

φpα∞,±(β),

with α∞,± = α(1 + 2γ(p− 2)(p− 1)αp−2 diag(X
>X
n )�

∫∞
0
L(βs)w

p−2
s,± ds)

− 1
p−2 .

First let us stress that without a close form expression of φdα and proper control of
∫∞

0
L(βs)w

p−2
s,± ds

with respect to p or α, it is difficult to conclude directly on the magnitude of the stochastic bias. Yet,
the main aspect we can comment on is that, as in the depth-2 case, α∞,± 6 α almost surely6 and that
the convergence speed of the loss controls the biasing effect. As in [36], it can be shown empirically
that φpα,± interpolate between the `1 and the `2 norm as α± → 0 and α± → +∞ respectively and
that the transition is faster than for the depth-2 case.

We directly prove this theorem here.
6Note that, as the weights are initialized positively, they remain positive: wt,± > 0, for all t > 0.
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Proof. We apply the Itô formula on w2−p
t,+ and w2−p

t,− to get the following:

d[w2−p
t,+ ] = (2− p)w1−p

t,+ � dwt,+ + 2(2− p)(1− p)γL(βt)w
−p
t,+ � w

2p−2
t,+ � diag(H)

= −p(2− p)X>r(βt)dt+ 2(2− p)(1− p)γL(βt)w
p−2
t,+ � diag(H)dt+ (2− p)

√
γL(βt)X

>dBt

= −X>dAt + C+
t dt,

where dAt := −p(p−2)r(βt)dt+2(p−2)
√
γL(βt)dBt and C+

t := 2(p−2)(p−1)γL(βt)w
p−2
t,+ �

diag(H). Similarly, with explicit notations, we have that:

d[w2−p
t,− ] = X>dAt + C−t dt.

Hence,

wpt,+ =

[
α2−p −X>

∫ t

0

dAs +

∫ t

0

C+
s ds

] p
2−p

and wpt,− =

[
α2−p +X>

∫ t

0

dAs +

∫ t

0

C−s ds

] p
2−p

.

And finally,

βt = wpt,+ − w
p
t,− =

[
α2−p +

∫ t

0

C+
s ds−X>

∫ t

0

dAs

] p
2−p

−
[
α2−p +

∫ t

0

C−s ds+X>
∫ t

0

dAs

] p
2−p

.

Defining α2−p
eff,± = α2−p +

∫∞
0
C±s ds and ν∞ =

∫∞
0

dAs, if all quantities have limits when t→∞
we have that β∞ = hα,p,±(X>ν∞), where hα,p,±(z) = (α2−p

eff,+−z)
p

2−p −(α2−p
eff,−+z)

p
2−p . Inverting

this function and integrating gives the theorem with the standard KKT argument [see 36, under
Theorem 1 page 4].

F Technical lemmas

In this section, we state and prove technical lemmas which we use to prove our main results.

Lemma 9. For any interpolator β∗, St =
∫ t

0

√
γL(βs)〈X̄>dBs, βs − β∗〉 is a square-integrable

martingale with a.s. continuous paths. And for any a, b ≥ 0:

P (∀t ≥ 0, |St| ≤ a+ 2bγλmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗‖21)ds) ≥ 1− 2 exp(−2ab)

= 1− p,

where p = 2 exp(−2ab).

Proof. Since (St)t≥0 is a is a locally square-integrable martingale with a.s. continuous paths, [19,
Corollary 11] gives that

P (∃t ∈ (0,∞) : St ≥ a+ b〈S〉t) ≤ exp{−2ab}).

We now compute the quadratic variation 〈S〉t. Notice that 〈X̄>dBt, βt − β∗〉 =
∑n
k=1[X̄(βt −

β∗)]kdBkt , hence the quadratic variation of St equals:

〈S〉t = γ

∫ t

0

L(βs)

n∑
k=1

[X̄(βt − β∗)]2kds

= γ

∫ t

0

L(βs)‖X̄(βs − β∗)‖2ds

= 4γ

∫ t

0

L(βs)
2ds.
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Furthermore, since:

4

∫ t

0

L(βs)
2ds =

∫ t

0

L(βs)(βs − β∗)T X̄>X̄(βs − β∗)ds

≤ λmax

∫ t

0

L(βs)‖βs − β∗‖22ds

≤ 2λmax

∫ t

0

L(βs)(‖βs‖22 + ‖β∗‖22)ds

≤ 2λmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗‖21)ds,

we obtain that:

〈S〉t ≤ 2γλmax

∫ t

0

L(βs)(‖βs‖21 + ‖β∗‖21)ds,

and:

P (∃t ≥ 0, |St| ≥ a+ 2bγλmax

∫ t

0

L(βs)(‖βs‖22 + ‖β∗‖21)ds)

≤ P (∃t ≥ 0, |St| ≥ a+ b〈S〉t)
≤ 2 exp(−2ab).

Lemma 10. Let A,B > 0 such that AB + ln(B) ≥ 2. Assume that x ≤ A+B lnx, then

x ≤ 5

2
(A+B ln(B)).

Proof. x ≤ A+B lnx is equivalent to x ≤ exp(−A
B ) exp( xB ). Standard analysis on the Lambert W

function shows that this leads to x ≤ −BW−1(− 1
B exp(−A

B )), whereW−1 is the lower branch 7. For
− 1
e ≤ z ≤ 0, the branch W−1 can be lower bounded as: W−1(z) ≥ −

√
−2(1 + ln(−z)) + ln(−z)

(see Theorem 1 of [7]). Since ln(−z) = ln( 1
B exp(−A

B )) = −(AB + ln(B)):

x ≤ B(

√
2(−1 +

A

B
+ ln(B)) +

A

B
+ ln(B))

≤ B(
√

2(−1 +
A

B
+ ln(B)) +

A

B
+ ln(B))

≤ (
√

2 + 1)B(
A

B
+ ln(B))

≤ 5

2
(A+B ln(B)).

This concludes the proof of the Lemma.

Lemma 11. For any α > 0 and β ∈ R, we have the following inequality:

φα(β)− φα(0) ≥ 1

4
max

{
0, |β| ln |β|

2α2

}
.

Proof. Let us fix α ∈ R. First notice that by parity in β of the functions involved, and as the
inequality holds in β = 0, we can suppose that β > 0 and define

f(β) := φα(β)− φα(0) =
1

4

[
βarcsinh

(
β

2α2

)
−
√
β2 + 4α4 + 2α2

]
.

7see https://en.wikipedia.org/wiki/Lambert_W_function for more details
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Trivially, f ′(β) = 1
4arcsinh

(
β

2α2

)
> 0. Hence, it increases on R+ and as f(0) = 0, f is always

positive. This show the inequality for the left term of the max.

For the other term of the max, let us define g(β) := 1
4β ln β

2α2 , we have that

4[f ′(β)− g′(β)] = arcsinh

(
β

2α2

)
− ln

(
β

2α2

)
+ 1 = ln

(
1 +

√
1 +

4α4

β2

)
+ 1 > 0.

Hence, f − g increases and as f(0)− g(0) = 0, we have that f > g which concludes the proof.
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