Online Robust Regression via SGD on the ℓ_1 loss

Scott Pesme (EPFL), Nicolas Flammarion (EPFL)

Assume we are given a stream of i.i.d. datapoints $(x_i, y_i)_{i \ge 0}$ where the responses $(y_i)_{i \ge 0}$ have potentially been corrupted by an oblivious adversary:

Adversarial "sparse" noise
$$\mathbb{P}(b \neq 0) = \eta \in [0,1)$$

$$y = \langle x, \, \theta^* \rangle + \underbrace{\varepsilon}_{\text{"Nice" noise}} + \underbrace{b}_{\text{"Nice" noise}}$$

In the paper we consider the following question:

Can we efficiently recover the gold parameter $\, heta^*$?

Current methods rely on handling the entire dataset at once and are therefore inefficient in large-scale settings. We propose a different approach.

Our approach

The ℓ_1 loss is known for its robustness properties. Hence a natural approach is to consider the least absolute deviation (LAD) problem:

$$\min_{\theta \in \mathbb{R}^d} f(\theta) := \mathbb{E}_{(x,y)}[|y - \langle x, \theta \rangle|]$$

Assuming $\mathbb{E}[x] = 0$ and $b \perp \!\!\! \perp (x, \varepsilon)$ then $\theta^* \in \operatorname{argmin}_{\theta} f(\theta)$. Minimising the LAD problem therefore makes sense.

To solve this problem we propose to use the very simple and highly scalable stochastic gradient descent (SGD) algorithm:

$$\theta_n = \theta_{n-1} + \gamma_n \operatorname{sgn}(y_n - \langle x_n, \theta_{n-1} \rangle) x_n$$

And we consider the averaged iterate $\bar{\theta}_n = n^{-1} \sum_{i=0}^{n-1} \theta_i$.

Underlying challenges

Several technical manipulations are required in order to obtain the optimal rates:

- we cannot expect f to be strongly convex over \mathbb{R}^d , hence simply applying the known SGD results leads to a suboptimal $O(n^{-1/2})$ rate
- the ℓ_1 loss isn't smooth, therefore it isn't transparent that Polyak-Ruppert averaging will lead to a fast O(1/n) rate
- ideally we want to obtain dominant convergence rate terms which are independent of the conditioning of the feature covariance matrix

Assumptions:

- $x \sim \mathcal{N}(0, H)$ where H is a $d \times d$ positive definite matrix
- $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and is independent of x
- the adversarial noise b is independent of (x, ε) and $\mathbb{P}(b \neq 0) = \eta \in [0, 1)$

Notations:
$$\bullet \mu = \lambda_{min}(H)$$
 $\bullet \tilde{\eta} = \eta \cdot \left(1 - \mathbb{E}_b \left[\exp(-\frac{b^2}{2\sigma^2}) \mid b \neq 0\right]\right) \in [0, \eta)$
$$\bullet R^2 = \operatorname{trace}(H)$$
 effective outlier proportion

Theorem:

Consider the SGD iterates on the \mathcal{C}_1 loss. Assume $\gamma_n = \gamma_0 \ n^{-1/2}$. Then for all $n \ge 1$:

$$\mathbb{E} \left[\| \bar{\theta}_n - \theta^* \|_H^2 \right] = O\left(\frac{\sigma^2 d}{(1 - \tilde{\eta})^2 n} \right) + \tilde{O}\left(\frac{\|\theta_0 - \theta^*\|^4}{\gamma_0^2 (1 - \tilde{\eta})^2 n} \right) + \tilde{O}\left(\frac{\gamma_0^2 R^4}{(1 - \tilde{\eta})^2 n} \right) + \tilde{O}\left(\frac{1}{\mu^2 n^{3/2}} \right)$$
prediction
optimal
variance term
bias term
analysis
by-product?
higher order
herms

EPFL

Result analysis

We highlight that:

- the result is given in terms of the classical prediction error
- the overall $O(n^{-1})$ rate is unimprovable
- the variance term is statistically optimal with regards to σ , d and n
- the bound depends on the effective outlier proportion $\tilde{\eta}$
- in the finite horizon framework with N samples, the breakdown point is state of the art: $\tilde{\eta}=1-\tilde{\Omega}(N^{-1/2})$
- the dominant terms are independent of the condition constant μ
- the algorithm is (nearly) parameter free

Discussion and future work:

- the Gaussian assumptions on (x, ε) are quite strong, we believe they could be relaxed
- the optimal dependency on η is still an open interesting question

Experiments

Experimental setup: • i.i.d. inputs $x_i \sim \mathcal{N}(0, H)$ where H is either identity or positive semi definite with eigenvalues $(1/k)_{1 \le k \le d}$

- the outputs are generated using i.i.d. noises $\varepsilon_i \sim \mathcal{N}(0, 1)$ and b_i following a toy contamination model (see paper)
- we compare averaged SGD on the ℓ_1 , ℓ_2 , Huber losses and to the state of the art AdaCRR-GD algorithm from (Suggala et al. 2019)

Notice that : • averaged SGD on the \mathcal{C}_1 loss exhibits a clear $O(n^{-1})$ convergence rate

- AdaCRR-GD is very sensitive to the conditioning of the covariance matrix H, this is not the case for our algorithm
- averaged SGD on the Huber loss does not lead to better performances and requires an extra parameter to tune