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Main result

Problem setup and corruption model

Assume we are given a stream of i.i.d. datapoints (x;,y;);>o Where the

responses (y;). have potentially been corrupted by an oblivious
Yi i>0

adversary:
Adversarial

‘sparse” noise
y=«(x, 0%+ & +b

“Nice” noise

P(b + 0) =75 € [0,1)

In the paper we consider the following question:
Can we efficiently recover the gold parameter 0* ?

Current methods rely on handling the entire dataset at once and are
therefore inefficient in large-scale settings. We propose a different
approach.

Our approach

The £, loss is known for its robustness properties. Hence a natural
approach is to consider the least absolute deviation (LAD) problem:

min f(0) := B[y = (x.0)|]
feR

Assuming E[x] =0 and b 1L (x, ¢) then 6* € argmin, f(60). Minimising
the LAD problem therefore makes sense.

To solve this problem we propose to use the very simple and highly
scalable stochastic gradient descent (SGD) algorithm:

en = Hn—l + ’n Sgn(yn o <Xn’ 9n—1>)xn

And we consider the averaged iterate én = n_IZ?z_OIQZ-.

Underlying challenges

Several technical manipulations are required in order to obtain the optimal
rates:

- we cannot expect f to be strongly convex over IRd, hence simply
applying the known SGD results leads to a suboptimal O(n~?) rate

- the £; loss isn’t smooth, therefore it isn’t transparent that Polyak-

Ruppert averaging will lead to a fast O(1/n) rate

- ideally we want to obtain dominant convergence rate terms which are
independent of the conditioning of the feature covariance matrix
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Result analysis

We highlight that :

Assumptions:

« x~ N, H) where H isad X d positive definite matrix - the result is given in terms of the classical prediction error

o) ..
» £ ~ (0, 6°) and is independent of x - the overall O(n™!) rate is unimprovable

- the adversarial noise b is independent of (x, £) and P(b # 0) =y € [0,1) | | o | _
- the variance term is statistically optimal with regards to o, d and n
2

b
Notations: eyt = 1, (H) eii=n-(1-E, [eXP(—z—GZ) | b#0]) €10, n)

effective outlier proportion

- the bound depends on the effective outlier proportion 7

« in the finite horizon framework with NV samples, the breakdown
point is state of the art: 7 = 1 — QN2

e R? = trace(H)

Theorem:

12 - the dominant terms are independent of the condition constant
Consider the SGD iterates on the | loss. Assume y, =y, n~ '“. Thenforalln > 1 :
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prediction thlmal bias term analysis
error variance term

* the algorithm is (nearly) parameter free

Discussion and future work :

- the Gaussian assumptions on (X, €) are quite strong, we believe
they could be relaxed

higher order
by-product ? herms

 the optimal dependency on # is still an open interesting question

Experimental setup: + i.i.d. inputs x; ~ (0, H) where H is either identity or positive semi definite with eigenvalues (1/k); ;.

- the outputs are generated using i.i.d. noises €, ~ /4 (0, 1) and b, following a toy contamination model (see paper)

- we compare averaged SGD on the |, ¢, , Huber losses and to the state of the art AdaCRR-GD algorithm from (Suggala et al. 2019)
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Convergence rate with bad conditioning lllustration of the breakdown points

Notice that : - averaged SGD on the ¢, loss exhibits a clear O(n_l) convergence rate

- AdaCRR-GD is very sensitive to the conditioning of the covariance matrix H, this is not the case for our algorithm

« averaged SGD on the Huber loss does not lead to better performances and requires an extra parameter to tune



