
•    where     is a   positive definite matrix 

•   and is independent of  

•  the adversarial noise   is independent of  and 

x ∼ 𝒩(0, H) H d × d
ε ∼ 𝒩(0, σ2) x

b (x, ε) ℙ(b ≠ 0) = η ∈ [0,1)

Assume we are given a stream of i.i.d. datapoints   where the 

responses  have potentially been corrupted by an oblivious 
adversary: 

(xi, yi)i≥0

(yi)i≥0

• in the finite horizon framework with  samples, the breakdown 
point is state of the art: 

N
η̃ = 1 − Ω̃(N−1/2)

• the result is given in terms of the classical prediction error 

• the overall    rate is unimprovable 

• the variance term is statistically optimal with regards to ,  and  

• the bound depends on the effective outlier proportion 

O(n−1)

σ d n

η̃

Current methods rely on handling the entire dataset at once and are 
therefore inefficient in large-scale settings. We propose a different 
approach.
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 Problem setup and corruption model

Assuming  and  then . Minimising 

the LAD problem therefore makes sense.

𝔼[x] = 0 b ⊥⊥ (x, ε) θ* ∈ argminθ f(θ)

θn = θn−1 + γn sgn(yn − ⟨xn, θn−1⟩)xn

And we consider the averaged iterate .θ̄n = n−1Σn−1
i=0 θi

y = ⟨x, θ*⟩+ +b
“Nice” noise ⏟

Adversarial  
“sparse” noise⏞ ℙ(b ≠ 0) = η ∈ [0,1)

Can we efficiently recover the gold parameter   ?θ*

In the paper we consider the following question: 

The  loss is known for its robustness properties. Hence a natural 
approach is to consider the least absolute deviation (LAD) problem: 

ℓ1

 Our approach

min
θ∈ℝd

f(θ) := 𝔼(x,y)[ |y − ⟨x, θ⟩ | ]

 Main result  Result analysis

 Experiments

Notations: 

∙ R2 = trace(H )

∙ μ = λmin(H) ∙ η̃ = η · (1 − 𝔼b[exp(−
b2

2σ2
) | b ≠ 0]) ∈ [0, η)

effective outlier proportion

 Underlying challenges

𝔼[∥θ̄n − θ*∥2
H] = O( σ2d

(1 − η̃)2n ) + Õ( ∥θ0 − θ*∥4

γ2
0(1 − η̃)2n ) + Õ( γ2

0 R4

(1 − η̃)2n ) + Õ( 1
μ2n3/2 )

prediction  
error

optimal 
variance term

bias term analysis 
by-product ?

higher order 
herms

Assumptions:

Consider the SGD iterates on the  loss.  Assume . Then for all ℓ1 γn = γ0 n−1/2 n ≥ 1 :
Theorem:

We highlight that : 

• the dominant terms are independent of the condition constant μ

Experimental setup: •  i.i.d. inputs   where    is either identity or positive semi definite with eigenvalues  

• the outputs are generated using i.i.d. noises   and   following a toy contamination model (see paper) 

• we compare averaged SGD on the ,   , Huber losses and to the state of the art AdaCRR-GD algorithm from (Suggala et al. 2019)

xi ∼ 𝒩(0, H) H (1/k)1≤k≤d

εi ∼ 𝒩(0, 1) bi

ℓ1 ℓ2

• the Gaussian assumptions on  are quite strong, we believe 
they could be relaxed

(x, ε)

• averaged SGD on the  loss exhibits a clear  convergence rate 

• AdaCRR-GD is very sensitive to the conditioning of the covariance matrix , this is not the case for our algorithm 

• averaged SGD on the Huber loss does not lead to better performances and requires an extra parameter to tune 

ℓ1 O(n−1)

H

Notice that : 

Convergence rate with bad conditioning Convergence rate with good conditioning Illustration of the breakdown points 

Discussion and future work : 

• the optimal dependency on  is still an open interesting question η

η

To solve this problem we propose to use the very simple and highly 
scalable stochastic gradient descent (SGD) algorithm:

• the algorithm is (nearly) parameter free

ε

Several technical manipulations are required in order to obtain the optimal 
rates:

• we cannot expect    to be strongly convex over , hence simply 
applying the known SGD results leads to a suboptimal  rate

f ℝd

O(n−1/2)

• the  loss isn’t smooth, therefore it isn’t transparent that Polyak-

Ruppert averaging will lead to a fast  rate

ℓ1
O(1/n)

• ideally we want to obtain dominant convergence rate terms which are 
independent of the conditioning of the feature covariance matrix


